Automatic extraction of 12 cardiovascular concepts from German discharge letters using pre-trained language models
Objective A vast amount of medical data is still stored in unstructured text documents. We present an automated method of information extraction from German unstructured clinical routine data from the cardiology domain enabling their usage in state-of-the-art data-driven deep learning projects. Meth...
Guardado en:
Autores principales: | Phillip Richter-Pechanski, Nicolas A Geis, Christina Kiriakou, Dominic M Schwab, Christoph Dieterich |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
SAGE Publishing
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d41227b45cd844759a6de54b16972fe7 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Automatic multilabel detection of ICD10 codes in Dutch cardiology discharge letters using neural networks
por: Arjan Sammani, et al.
Publicado: (2021) -
Assessing the accuracy of automatic speech recognition for psychotherapy
por: Adam S. Miner, et al.
Publicado: (2020) -
Single Shot Multibox Detector Automatic Polyp Detection Network Based on Gastrointestinal Endoscopic Images
por: Xiaoling Chen, et al.
Publicado: (2021) -
Impact of an electronic medical record-based appointment order on outpatient cardiology follow-up after hospital discharge
por: Kartik S. Telukuntla, et al.
Publicado: (2021) -
Natural language word embeddings as a glimpse into healthcare language and associated mortality surrounding end of life
por: Wei Gao, et al.
Publicado: (2021)