Agricultural Production on Erosion-Affected Land from the Perspective of Remote Sensing

In this article, we discuss the influence of soil erosion on crop yield in the erosion-prone chernozem region of South Moravia. Erosional and depositional areas show significant differences in soil properties, which are also reflected in total crop yield. Plots of winter wheat, grown during the year...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Bořivoj Šarapatka, Marek Bednář
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
EVI
S
Acceso en línea:https://doaj.org/article/d41243599013451cba915e5f474c6f04
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this article, we discuss the influence of soil erosion on crop yield in the erosion-prone chernozem region of South Moravia. Erosional and depositional areas show significant differences in soil properties, which are also reflected in total crop yield. Plots of winter wheat, grown during the years 2016–2019 were used for analysis. The Enhanced Vegetation Index (EVI), referred to in literature as one of the best correlates of yield, was used to provide indirect information on yield. Although erosional areas are visible on orthophoto images on chernozem soils, the necessary orthophoto images are not always available. Thus, we have proposed a method for the identification of such erosion-affected areas based on the use of Sentinel 2 satellite images and NDVI or NBR2 indices. The relationship between yield and erosion was expressed through Pearson’s correlation on a sample of pixels randomly selected on the studied plots. The results showed a statistically significant linear reduction in yield depending on the level of degradation. All plots were further reclassified, according to level of degradation, as high, medium, or low state of degradation, where the average EVI values were subsequently calculated. Yield on non-degraded soil is 16 ± 1% higher on average.