Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy

Noor Nabilah Talik Sisin,1 Khairunisak Abdul Razak,2 Safri Zainal Abidin,3 Nor Fazila Che Mat,1 Reduan Abdullah,1,4 Raizulnasuha Ab Rashid,1 Muhammad Afiq Khairil Anuar,1 Nur Hamizah Mohd Zainudin,1 Nashrulhaq Tagiling,1 Norazlina Mat Nawi,5 Wan Nordiana Rahman1 1School of Health Sciences, Universit...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Sisin NNT, Abdul Razak K, Zainal Abidin S, Che Mat NF, Abdullah R, Ab Rashid R, Khairil Anuar MA, Mohd Zainudin NH, Tagiling N, Mat Nawi N, Rahman WN
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2019
Materias:
Acceso en línea:https://doaj.org/article/d413ec083c2d484188ca59fce2adf73a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d413ec083c2d484188ca59fce2adf73a
record_format dspace
spelling oai:doaj.org-article:d413ec083c2d484188ca59fce2adf73a2021-12-02T08:51:56ZRadiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy1178-2013https://doaj.org/article/d413ec083c2d484188ca59fce2adf73a2019-12-01T00:00:00Zhttps://www.dovepress.com/radiosensitization-effects-by-bismuth-oxide-nanoparticles-in-combinati-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Noor Nabilah Talik Sisin,1 Khairunisak Abdul Razak,2 Safri Zainal Abidin,3 Nor Fazila Che Mat,1 Reduan Abdullah,1,4 Raizulnasuha Ab Rashid,1 Muhammad Afiq Khairil Anuar,1 Nur Hamizah Mohd Zainudin,1 Nashrulhaq Tagiling,1 Norazlina Mat Nawi,5 Wan Nordiana Rahman1 1School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia; 3Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia; 4Hospital of Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 5School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, MalaysiaCorrespondence: Wan Nordiana RahmanSchool of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, MalaysiaTel +60 97677811Email wandiana@usm.myPurpose: The aim of this study was to investigate the potential of the synergetic triple therapeutic combination encompassing bismuth oxide nanoparticles (BiONPs), cisplatin (Cis), and high dose rate (HDR) brachytherapy with Ir-192 source in breast cancer and normal fibroblast cell line.Methods: In vitro models of breast cancer cell lines (MCF-7, MDA-MB-231) and normal fibroblast cell line (NIH/3T3) were employed. Cellular localization and cytotoxicity studies were conducted prior to inspection on the radiosensitization effects and generation of reactive oxygen species (ROS) on three proposed radiosensitizers: BiONPs, Cis, and BiONPs-Cis combination (BC). The optimal, non-cytotoxic concentration of BiONPs (0.5 mM) and the 25% inhibitory concentration of Cis (1.30 μM) were applied. The radiosensitization effects were evaluated by using a 0.38 MeV Iridium-192 HDR brachytherapy source over a prescribed dose range of 0 Gy to 4 Gy.Results: The cellular localization of BiONPs was visualized by light microscopy and accumulation of the BiONPs within the vicinity of the nuclear membrane was observed. Quantification of the sensitization enhancement ratio extrapolated from the survival curves indicates radiosensitization effects for MCF-7 and MDA-MB-231 when treated with BiONPs, Cis, and BC. However, NIH/3T3 cells exhibited contradictive behavior as it only reacted towards the BC combination. Nonetheless, the MCF-7 cell line loaded with BC shows the highest SER of 4.29. ROS production analysis, on the other hand, shows that Cis and BC radiosensitizers generated the highest free radicals in comparison to BiONPs alone.Conclusion: A BiONPs-Cis combination was unveiled as a novel approach that offers promising radiosensitization enhancement that will increase the efficiency of tumor control while preserving the normal tissue at a reduced dose. This data is the first precedent to prove the synergetic implication of BiONPs, Cis, and HDR brachytherapy that will be beneficial for future chemoradiotherapy strategies in cancer care.Keywords: HDR brachytherapy, bismuth oxide nanoparticles, radiosensitization, cisplatin, chemoradiotherapySisin NNTAbdul Razak KZainal Abidin SChe Mat NFAbdullah RAb Rashid RKhairil Anuar MAMohd Zainudin NHTagiling NMat Nawi NRahman WNDove Medical Pressarticlehdr brachytherapybismuth oxide nanoparticlesradiosensitizationcisplatinchemoradiotherapyMedicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 14, Pp 9941-9954 (2019)
institution DOAJ
collection DOAJ
language EN
topic hdr brachytherapy
bismuth oxide nanoparticles
radiosensitization
cisplatin
chemoradiotherapy
Medicine (General)
R5-920
spellingShingle hdr brachytherapy
bismuth oxide nanoparticles
radiosensitization
cisplatin
chemoradiotherapy
Medicine (General)
R5-920
Sisin NNT
Abdul Razak K
Zainal Abidin S
Che Mat NF
Abdullah R
Ab Rashid R
Khairil Anuar MA
Mohd Zainudin NH
Tagiling N
Mat Nawi N
Rahman WN
Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy
description Noor Nabilah Talik Sisin,1 Khairunisak Abdul Razak,2 Safri Zainal Abidin,3 Nor Fazila Che Mat,1 Reduan Abdullah,1,4 Raizulnasuha Ab Rashid,1 Muhammad Afiq Khairil Anuar,1 Nur Hamizah Mohd Zainudin,1 Nashrulhaq Tagiling,1 Norazlina Mat Nawi,5 Wan Nordiana Rahman1 1School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 2School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia; 3Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Penang, Malaysia; 4Hospital of Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia; 5School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, MalaysiaCorrespondence: Wan Nordiana RahmanSchool of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, MalaysiaTel +60 97677811Email wandiana@usm.myPurpose: The aim of this study was to investigate the potential of the synergetic triple therapeutic combination encompassing bismuth oxide nanoparticles (BiONPs), cisplatin (Cis), and high dose rate (HDR) brachytherapy with Ir-192 source in breast cancer and normal fibroblast cell line.Methods: In vitro models of breast cancer cell lines (MCF-7, MDA-MB-231) and normal fibroblast cell line (NIH/3T3) were employed. Cellular localization and cytotoxicity studies were conducted prior to inspection on the radiosensitization effects and generation of reactive oxygen species (ROS) on three proposed radiosensitizers: BiONPs, Cis, and BiONPs-Cis combination (BC). The optimal, non-cytotoxic concentration of BiONPs (0.5 mM) and the 25% inhibitory concentration of Cis (1.30 μM) were applied. The radiosensitization effects were evaluated by using a 0.38 MeV Iridium-192 HDR brachytherapy source over a prescribed dose range of 0 Gy to 4 Gy.Results: The cellular localization of BiONPs was visualized by light microscopy and accumulation of the BiONPs within the vicinity of the nuclear membrane was observed. Quantification of the sensitization enhancement ratio extrapolated from the survival curves indicates radiosensitization effects for MCF-7 and MDA-MB-231 when treated with BiONPs, Cis, and BC. However, NIH/3T3 cells exhibited contradictive behavior as it only reacted towards the BC combination. Nonetheless, the MCF-7 cell line loaded with BC shows the highest SER of 4.29. ROS production analysis, on the other hand, shows that Cis and BC radiosensitizers generated the highest free radicals in comparison to BiONPs alone.Conclusion: A BiONPs-Cis combination was unveiled as a novel approach that offers promising radiosensitization enhancement that will increase the efficiency of tumor control while preserving the normal tissue at a reduced dose. This data is the first precedent to prove the synergetic implication of BiONPs, Cis, and HDR brachytherapy that will be beneficial for future chemoradiotherapy strategies in cancer care.Keywords: HDR brachytherapy, bismuth oxide nanoparticles, radiosensitization, cisplatin, chemoradiotherapy
format article
author Sisin NNT
Abdul Razak K
Zainal Abidin S
Che Mat NF
Abdullah R
Ab Rashid R
Khairil Anuar MA
Mohd Zainudin NH
Tagiling N
Mat Nawi N
Rahman WN
author_facet Sisin NNT
Abdul Razak K
Zainal Abidin S
Che Mat NF
Abdullah R
Ab Rashid R
Khairil Anuar MA
Mohd Zainudin NH
Tagiling N
Mat Nawi N
Rahman WN
author_sort Sisin NNT
title Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy
title_short Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy
title_full Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy
title_fullStr Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy
title_full_unstemmed Radiosensitization Effects by Bismuth Oxide Nanoparticles in Combination with Cisplatin for High Dose Rate Brachytherapy
title_sort radiosensitization effects by bismuth oxide nanoparticles in combination with cisplatin for high dose rate brachytherapy
publisher Dove Medical Press
publishDate 2019
url https://doaj.org/article/d413ec083c2d484188ca59fce2adf73a
work_keys_str_mv AT sisinnnt radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT abdulrazakk radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT zainalabidins radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT chematnf radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT abdullahr radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT abrashidr radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT khairilanuarma radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT mohdzainudinnh radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT tagilingn radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT matnawin radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
AT rahmanwn radiosensitizationeffectsbybismuthoxidenanoparticlesincombinationwithcisplatinforhighdoseratebrachytherapy
_version_ 1718398392984403968