Autonomous reinforcement learning agent for chemical vapor deposition synthesis of quantum materials
Abstract Predictive materials synthesis is the primary bottleneck in realizing functional and quantum materials. Strategies for synthesis of promising materials are currently identified by time-consuming trial and error and there are no known predictive schemes to design synthesis parameters for mat...
Guardado en:
Autores principales: | Pankaj Rajak, Aravind Krishnamoorthy, Ankit Mishra, Rajiv Kalia, Aiichiro Nakano, Priya Vashishta |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4144a8214a94720bed9ca615ef56f69 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Autonomous reinforcement learning agent for stretchable kirigami design of 2D materials
por: Pankaj Rajak, et al.
Publicado: (2021) -
Quantum–continuum simulation of underpotential deposition at electrified metal–solution interfaces
por: Stephen E. Weitzner, et al.
Publicado: (2017) -
Study of disorder in pulsed laser deposited double perovskite oxides by first-principle structure prediction
por: Edoardo Fertitta, et al.
Publicado: (2021) -
Multipolicy Robot-Following Model Based on Reinforcement Learning
por: Ning Yu, et al.
Publicado: (2021) -
Accelerated design and discovery of perovskites with high conductivity for energy applications through machine learning
por: Pikee Priya, et al.
Publicado: (2021)