Spatial co-location pattern mining based on the improved density peak clustering and the fuzzy neighbor relationship
Spatial co-location pattern mining discovers the subsets of spatial features frequently observed together in nearby geographic space. To reduce time and space consumption in checking the clique relationship of row instances of the traditional co-location pattern mining methods, the existing work ado...
Guardado en:
Autores principales: | Meijiao Wang, Yu chen, Yunyun Wu, Libo He |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4312ad2d2974781a7262e97cfc2465d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Spatial modeling of forest fires in Mexico: an integration of two data sources
por: Zúñiga-Vásquez,José Manuel, et al.
Publicado: (2017) -
LCBRG: A lane-level road cluster mining algorithm with bidirectional region growing
por: Gong Xianyong, et al.
Publicado: (2021) -
Location-aware Mobile Services for a Smart City: Design, Implementation and Deployment
por: Calderoni,Luca, et al.
Publicado: (2012) -
PERBANDINGAN ANTARA METODE K-MEANS CLUSTERING DENGAN GATH-GEVA CLUSTERING
por: Siti Lailiyah, et al.
Publicado: (2016) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
por: Jie Cao*, et al.
Publicado: (2021)