Spatial co-location pattern mining based on the improved density peak clustering and the fuzzy neighbor relationship
Spatial co-location pattern mining discovers the subsets of spatial features frequently observed together in nearby geographic space. To reduce time and space consumption in checking the clique relationship of row instances of the traditional co-location pattern mining methods, the existing work ado...
Enregistré dans:
| Auteurs principaux: | Meijiao Wang, Yu chen, Yunyun Wu, Libo He |
|---|---|
| Format: | article |
| Langue: | EN |
| Publié: |
AIMS Press
2021
|
| Sujets: | |
| Accès en ligne: | https://doaj.org/article/d4312ad2d2974781a7262e97cfc2465d |
| Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Spatial modeling of forest fires in Mexico: an integration of two data sources
par: Zúñiga-Vásquez,José Manuel, et autres
Publié: (2017) -
LCBRG: A lane-level road cluster mining algorithm with bidirectional region growing
par: Gong Xianyong, et autres
Publié: (2021) -
Location-aware Mobile Services for a Smart City: Design, Implementation and Deployment
par: Calderoni,Luca, et autres
Publié: (2012) -
PERBANDINGAN ANTARA METODE K-MEANS CLUSTERING DENGAN GATH-GEVA CLUSTERING
par: Siti Lailiyah, et autres
Publié: (2016) -
A Novel Oversampling Method for Imbalanced Datasets Based on Density Peaks Clustering
par: Jie Cao*, et autres
Publié: (2021)