Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry
The main contribution of this paper is to develop a new flowmeter fault detection approach based on optimized non-singleton type-3 (NT3) fuzzy logic systems (FLSs). The introduced method is implemented on an experimental gas industry plant. The system is modeled by NT3FLSs, and the faults are detect...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d434c1d0387345ee95e77e0afa48b757 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d434c1d0387345ee95e77e0afa48b757 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d434c1d0387345ee95e77e0afa48b7572021-11-11T19:20:05ZNon-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry10.3390/s212174191424-8220https://doaj.org/article/d434c1d0387345ee95e77e0afa48b7572021-11-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/7419https://doaj.org/toc/1424-8220The main contribution of this paper is to develop a new flowmeter fault detection approach based on optimized non-singleton type-3 (NT3) fuzzy logic systems (FLSs). The introduced method is implemented on an experimental gas industry plant. The system is modeled by NT3FLSs, and the faults are detected by comparison of measured end estimated signals. In this scheme, the detecting performance depends on the estimation and modeling performance. The suggested NT3FLS is used because of the existence of a high level of measurement errors and uncertainties in this problem. The designed NT3FLS with uncertain footprint-of-uncertainty (FOU), fuzzy secondary memberships and adaptive non-singleton fuzzification results in a powerful tool for modeling signals immersed in noise and error. The level of non-singleton fuzzification and membership parameters are tuned by maximum correntropy (MC) unscented Kalman filter (KF), and the rule parameters are learned by correntropy KF (CKF) with fuzzy kernel size. The suggested learning algorithms can handle the non-Gaussian noises that are common in industrial applications. The various types of flowmeters are investigated, and the effect of common faults are examined. It is shown that the suggested approach can detect the various faults with good accuracy in comparison with conventional approaches.Jing-he WangJafar TavoosiArdashir MohammadzadehSaleh MobayenJihad H. AsadWudhichai AssawinchaichoteMai The VuPaweł SkruchMDPI AGarticlelearning algorithmfault detectiontype-3 fuzzy logicnon-Gaussian noisecorrentropy Kalman filterChemical technologyTP1-1185ENSensors, Vol 21, Iss 7419, p 7419 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
learning algorithm fault detection type-3 fuzzy logic non-Gaussian noise correntropy Kalman filter Chemical technology TP1-1185 |
spellingShingle |
learning algorithm fault detection type-3 fuzzy logic non-Gaussian noise correntropy Kalman filter Chemical technology TP1-1185 Jing-he Wang Jafar Tavoosi Ardashir Mohammadzadeh Saleh Mobayen Jihad H. Asad Wudhichai Assawinchaichote Mai The Vu Paweł Skruch Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry |
description |
The main contribution of this paper is to develop a new flowmeter fault detection approach based on optimized non-singleton type-3 (NT3) fuzzy logic systems (FLSs). The introduced method is implemented on an experimental gas industry plant. The system is modeled by NT3FLSs, and the faults are detected by comparison of measured end estimated signals. In this scheme, the detecting performance depends on the estimation and modeling performance. The suggested NT3FLS is used because of the existence of a high level of measurement errors and uncertainties in this problem. The designed NT3FLS with uncertain footprint-of-uncertainty (FOU), fuzzy secondary memberships and adaptive non-singleton fuzzification results in a powerful tool for modeling signals immersed in noise and error. The level of non-singleton fuzzification and membership parameters are tuned by maximum correntropy (MC) unscented Kalman filter (KF), and the rule parameters are learned by correntropy KF (CKF) with fuzzy kernel size. The suggested learning algorithms can handle the non-Gaussian noises that are common in industrial applications. The various types of flowmeters are investigated, and the effect of common faults are examined. It is shown that the suggested approach can detect the various faults with good accuracy in comparison with conventional approaches. |
format |
article |
author |
Jing-he Wang Jafar Tavoosi Ardashir Mohammadzadeh Saleh Mobayen Jihad H. Asad Wudhichai Assawinchaichote Mai The Vu Paweł Skruch |
author_facet |
Jing-he Wang Jafar Tavoosi Ardashir Mohammadzadeh Saleh Mobayen Jihad H. Asad Wudhichai Assawinchaichote Mai The Vu Paweł Skruch |
author_sort |
Jing-he Wang |
title |
Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry |
title_short |
Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry |
title_full |
Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry |
title_fullStr |
Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry |
title_full_unstemmed |
Non-Singleton Type-3 Fuzzy Approach for Flowmeter Fault Detection: Experimental Study in a Gas Industry |
title_sort |
non-singleton type-3 fuzzy approach for flowmeter fault detection: experimental study in a gas industry |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d434c1d0387345ee95e77e0afa48b757 |
work_keys_str_mv |
AT jinghewang nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry AT jafartavoosi nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry AT ardashirmohammadzadeh nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry AT salehmobayen nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry AT jihadhasad nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry AT wudhichaiassawinchaichote nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry AT maithevu nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry AT pawełskruch nonsingletontype3fuzzyapproachforflowmeterfaultdetectionexperimentalstudyinagasindustry |
_version_ |
1718431556128735232 |