Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.

Intrapulmonary arteriovenous anastomoses (IPAVs) are large diameter connections that allow blood to bypass the lung capillaries and may provide a route for right-to-left embolus transmission. These anastomoses are recruited by exercise and catecholamines and hypoxia. Yet, whether IPAVs are recruited...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Melissa L Bates, Emily T Farrell, Alyssa Drezdon, Joseph E Jacobson, Scott B Perlman, Marlowe W Eldridge
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d43fefe268a74a29b4db3caa63976b44
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d43fefe268a74a29b4db3caa63976b44
record_format dspace
spelling oai:doaj.org-article:d43fefe268a74a29b4db3caa63976b442021-11-25T06:08:47ZHypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.1932-620310.1371/journal.pone.0101146https://doaj.org/article/d43fefe268a74a29b4db3caa63976b442014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/25013985/?tool=EBIhttps://doaj.org/toc/1932-6203Intrapulmonary arteriovenous anastomoses (IPAVs) are large diameter connections that allow blood to bypass the lung capillaries and may provide a route for right-to-left embolus transmission. These anastomoses are recruited by exercise and catecholamines and hypoxia. Yet, whether IPAVs are recruited via direct, oxygen sensitive regulatory mechanisms or indirect effects secondary to redistribution pulmonary blood flow is unknown. Here, we hypothesized that the addition of exercise to hypoxic gas breathing, which increases cardiac output, would augment IPAVs recruitment in healthy humans. To test this hypothesis, we measured the transpulmonary passage of 99mTc-macroaggregated albumin particles (99mTc-MAA) in seven healthy volunteers, at rest and with exercise at 85% of volitional max, with normoxic (FIO2 = 0.21) and hypoxic (FIO2 = 0.10) gas breathing. We found increased 99mTc-MAA passage in both exercise conditions and resting hypoxia. However, contrary to our hypothesis, we found the greatest 99mTc-MAA passage with resting hypoxia. As an additional, secondary endpoint, we also noted that the transpulmonary passage of 99mTc-MAA was well-correlated with the alveolar-arterial oxygen difference (A-aDO2) during exercise. While increased cardiac output has been proposed as an important modulator of IPAVs recruitment, we provide evidence that the modulation of blood flow through these pathways is more complex and that increasing cardiac output does not necessarily increase IPAVs recruitment. As we discuss, our data suggest that the resistance downstream of IPAVs is an important determinant of their perfusion.Melissa L BatesEmily T FarrellAlyssa DrezdonJoseph E JacobsonScott B PerlmanMarlowe W EldridgePublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 7, p e101146 (2014)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Melissa L Bates
Emily T Farrell
Alyssa Drezdon
Joseph E Jacobson
Scott B Perlman
Marlowe W Eldridge
Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.
description Intrapulmonary arteriovenous anastomoses (IPAVs) are large diameter connections that allow blood to bypass the lung capillaries and may provide a route for right-to-left embolus transmission. These anastomoses are recruited by exercise and catecholamines and hypoxia. Yet, whether IPAVs are recruited via direct, oxygen sensitive regulatory mechanisms or indirect effects secondary to redistribution pulmonary blood flow is unknown. Here, we hypothesized that the addition of exercise to hypoxic gas breathing, which increases cardiac output, would augment IPAVs recruitment in healthy humans. To test this hypothesis, we measured the transpulmonary passage of 99mTc-macroaggregated albumin particles (99mTc-MAA) in seven healthy volunteers, at rest and with exercise at 85% of volitional max, with normoxic (FIO2 = 0.21) and hypoxic (FIO2 = 0.10) gas breathing. We found increased 99mTc-MAA passage in both exercise conditions and resting hypoxia. However, contrary to our hypothesis, we found the greatest 99mTc-MAA passage with resting hypoxia. As an additional, secondary endpoint, we also noted that the transpulmonary passage of 99mTc-MAA was well-correlated with the alveolar-arterial oxygen difference (A-aDO2) during exercise. While increased cardiac output has been proposed as an important modulator of IPAVs recruitment, we provide evidence that the modulation of blood flow through these pathways is more complex and that increasing cardiac output does not necessarily increase IPAVs recruitment. As we discuss, our data suggest that the resistance downstream of IPAVs is an important determinant of their perfusion.
format article
author Melissa L Bates
Emily T Farrell
Alyssa Drezdon
Joseph E Jacobson
Scott B Perlman
Marlowe W Eldridge
author_facet Melissa L Bates
Emily T Farrell
Alyssa Drezdon
Joseph E Jacobson
Scott B Perlman
Marlowe W Eldridge
author_sort Melissa L Bates
title Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.
title_short Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.
title_full Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.
title_fullStr Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.
title_full_unstemmed Hypoxia and exercise increase the transpulmonary passage of 99mTc-labeled albumin particles in humans.
title_sort hypoxia and exercise increase the transpulmonary passage of 99mtc-labeled albumin particles in humans.
publisher Public Library of Science (PLoS)
publishDate 2014
url https://doaj.org/article/d43fefe268a74a29b4db3caa63976b44
work_keys_str_mv AT melissalbates hypoxiaandexerciseincreasethetranspulmonarypassageof99mtclabeledalbuminparticlesinhumans
AT emilytfarrell hypoxiaandexerciseincreasethetranspulmonarypassageof99mtclabeledalbuminparticlesinhumans
AT alyssadrezdon hypoxiaandexerciseincreasethetranspulmonarypassageof99mtclabeledalbuminparticlesinhumans
AT josephejacobson hypoxiaandexerciseincreasethetranspulmonarypassageof99mtclabeledalbuminparticlesinhumans
AT scottbperlman hypoxiaandexerciseincreasethetranspulmonarypassageof99mtclabeledalbuminparticlesinhumans
AT marloweweldridge hypoxiaandexerciseincreasethetranspulmonarypassageof99mtclabeledalbuminparticlesinhumans
_version_ 1718414131497795584