Learning dominant physical processes with data-driven balance models

The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jared L. Callaham, James V. Koch, Bingni W. Brunton, J. Nathan Kutz, Steven L. Brunton
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/d464131237b648b2a94206b7d3ce44f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustion.