Learning dominant physical processes with data-driven balance models
The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustio...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d464131237b648b2a94206b7d3ce44f4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d464131237b648b2a94206b7d3ce44f4 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d464131237b648b2a94206b7d3ce44f42021-12-02T14:03:50ZLearning dominant physical processes with data-driven balance models10.1038/s41467-021-21331-z2041-1723https://doaj.org/article/d464131237b648b2a94206b7d3ce44f42021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21331-zhttps://doaj.org/toc/2041-1723The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustion.Jared L. CallahamJames V. KochBingni W. BruntonJ. Nathan KutzSteven L. BruntonNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Jared L. Callaham James V. Koch Bingni W. Brunton J. Nathan Kutz Steven L. Brunton Learning dominant physical processes with data-driven balance models |
description |
The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustion. |
format |
article |
author |
Jared L. Callaham James V. Koch Bingni W. Brunton J. Nathan Kutz Steven L. Brunton |
author_facet |
Jared L. Callaham James V. Koch Bingni W. Brunton J. Nathan Kutz Steven L. Brunton |
author_sort |
Jared L. Callaham |
title |
Learning dominant physical processes with data-driven balance models |
title_short |
Learning dominant physical processes with data-driven balance models |
title_full |
Learning dominant physical processes with data-driven balance models |
title_fullStr |
Learning dominant physical processes with data-driven balance models |
title_full_unstemmed |
Learning dominant physical processes with data-driven balance models |
title_sort |
learning dominant physical processes with data-driven balance models |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d464131237b648b2a94206b7d3ce44f4 |
work_keys_str_mv |
AT jaredlcallaham learningdominantphysicalprocesseswithdatadrivenbalancemodels AT jamesvkoch learningdominantphysicalprocesseswithdatadrivenbalancemodels AT bingniwbrunton learningdominantphysicalprocesseswithdatadrivenbalancemodels AT jnathankutz learningdominantphysicalprocesseswithdatadrivenbalancemodels AT stevenlbrunton learningdominantphysicalprocesseswithdatadrivenbalancemodels |
_version_ |
1718392111605219328 |