Learning dominant physical processes with data-driven balance models

The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustio...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jared L. Callaham, James V. Koch, Bingni W. Brunton, J. Nathan Kutz, Steven L. Brunton
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/d464131237b648b2a94206b7d3ce44f4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d464131237b648b2a94206b7d3ce44f4
record_format dspace
spelling oai:doaj.org-article:d464131237b648b2a94206b7d3ce44f42021-12-02T14:03:50ZLearning dominant physical processes with data-driven balance models10.1038/s41467-021-21331-z2041-1723https://doaj.org/article/d464131237b648b2a94206b7d3ce44f42021-02-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-21331-zhttps://doaj.org/toc/2041-1723The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustion.Jared L. CallahamJames V. KochBingni W. BruntonJ. Nathan KutzSteven L. BruntonNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-10 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Jared L. Callaham
James V. Koch
Bingni W. Brunton
J. Nathan Kutz
Steven L. Brunton
Learning dominant physical processes with data-driven balance models
description The dynamics of complex physical systems can be determined by the balance of a few dominant processes. Callaham et al. propose a machine learning approach for the identification of dominant regimes from experimental or numerical data with examples from turbulence, optics, neuroscience, and combustion.
format article
author Jared L. Callaham
James V. Koch
Bingni W. Brunton
J. Nathan Kutz
Steven L. Brunton
author_facet Jared L. Callaham
James V. Koch
Bingni W. Brunton
J. Nathan Kutz
Steven L. Brunton
author_sort Jared L. Callaham
title Learning dominant physical processes with data-driven balance models
title_short Learning dominant physical processes with data-driven balance models
title_full Learning dominant physical processes with data-driven balance models
title_fullStr Learning dominant physical processes with data-driven balance models
title_full_unstemmed Learning dominant physical processes with data-driven balance models
title_sort learning dominant physical processes with data-driven balance models
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d464131237b648b2a94206b7d3ce44f4
work_keys_str_mv AT jaredlcallaham learningdominantphysicalprocesseswithdatadrivenbalancemodels
AT jamesvkoch learningdominantphysicalprocesseswithdatadrivenbalancemodels
AT bingniwbrunton learningdominantphysicalprocesseswithdatadrivenbalancemodels
AT jnathankutz learningdominantphysicalprocesseswithdatadrivenbalancemodels
AT stevenlbrunton learningdominantphysicalprocesseswithdatadrivenbalancemodels
_version_ 1718392111605219328