Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode
Abstract In order to replace Pt CE in dye sensitized solar cell (DSSC) with simple and low cost, copper polypyyrol functionalized multiwall carbon nanotubes (Cu-PPy-FWCNTS) nanocomposite CE was fabricated by two step electrodeposition method on the stainless-steel substrate. The surface morphology,...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d47438070741491a98cd135c514ecfba |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d47438070741491a98cd135c514ecfba |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d47438070741491a98cd135c514ecfba2021-12-02T16:26:38ZCost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode10.1038/s41598-021-94404-02045-2322https://doaj.org/article/d47438070741491a98cd135c514ecfba2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94404-0https://doaj.org/toc/2045-2322Abstract In order to replace Pt CE in dye sensitized solar cell (DSSC) with simple and low cost, copper polypyyrol functionalized multiwall carbon nanotubes (Cu-PPy-FWCNTS) nanocomposite CE was fabricated by two step electrodeposition method on the stainless-steel substrate. The surface morphology, electrical conductivity, electrochemical properties of Cu-PPy-FWCNTS nanocomposite CE electrodes were observed by using verity of techniques such as scanning electron microscopy, a four-probe method and electrochemical workstation. The Fourier transform infrared (FTIR) spectroscopy confirms the presence of FMWCNTS into PPy-FMWCNTS nanocomposite and XRD analysis verified the Cu nanostructures had come into being. The cyclic voltammogram and Tafel polarization measurement demonstrated that solution processed Cu-PPy-FWCNTS nanocomposites CE had smaller charge transfer resistance Rct (4.31 Ω cm2) and higher electrocatalytic performance for I3 −/I− redox solution. Finally, the photovoltaic efficiency of DSSC assembled with Cu-PPy-FWCNTS nanocomposite CE and Platinized CE were compared. The results revealed that the photovoltaic efficiency of DSSC with Cu-PPy-FWCNTS nanocomposites CE reached (7.1%), which is superior to Platinized CE (6.4%). The higher photovoltaic efficiency of the Cu-PPy-FMWCNTS film is due to copper nanostructures that lead to higher cathodic current density (2.35 mA/cm2). The simple fabrication method, excellent electrocatalytic and photovoltaic properties permit the Cu-PPy-FWCNTS nanocomposites credible alternative CE to save the cost of DSSC.Shaista RafiqueImran RashidRehana SharifNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Shaista Rafique Imran Rashid Rehana Sharif Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode |
description |
Abstract In order to replace Pt CE in dye sensitized solar cell (DSSC) with simple and low cost, copper polypyyrol functionalized multiwall carbon nanotubes (Cu-PPy-FWCNTS) nanocomposite CE was fabricated by two step electrodeposition method on the stainless-steel substrate. The surface morphology, electrical conductivity, electrochemical properties of Cu-PPy-FWCNTS nanocomposite CE electrodes were observed by using verity of techniques such as scanning electron microscopy, a four-probe method and electrochemical workstation. The Fourier transform infrared (FTIR) spectroscopy confirms the presence of FMWCNTS into PPy-FMWCNTS nanocomposite and XRD analysis verified the Cu nanostructures had come into being. The cyclic voltammogram and Tafel polarization measurement demonstrated that solution processed Cu-PPy-FWCNTS nanocomposites CE had smaller charge transfer resistance Rct (4.31 Ω cm2) and higher electrocatalytic performance for I3 −/I− redox solution. Finally, the photovoltaic efficiency of DSSC assembled with Cu-PPy-FWCNTS nanocomposite CE and Platinized CE were compared. The results revealed that the photovoltaic efficiency of DSSC with Cu-PPy-FWCNTS nanocomposites CE reached (7.1%), which is superior to Platinized CE (6.4%). The higher photovoltaic efficiency of the Cu-PPy-FMWCNTS film is due to copper nanostructures that lead to higher cathodic current density (2.35 mA/cm2). The simple fabrication method, excellent electrocatalytic and photovoltaic properties permit the Cu-PPy-FWCNTS nanocomposites credible alternative CE to save the cost of DSSC. |
format |
article |
author |
Shaista Rafique Imran Rashid Rehana Sharif |
author_facet |
Shaista Rafique Imran Rashid Rehana Sharif |
author_sort |
Shaista Rafique |
title |
Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode |
title_short |
Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode |
title_full |
Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode |
title_fullStr |
Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode |
title_full_unstemmed |
Cost effective dye sensitized solar cell based on novel Cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode |
title_sort |
cost effective dye sensitized solar cell based on novel cu polypyrrole multiwall carbon nanotubes nanocomposites counter electrode |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/d47438070741491a98cd135c514ecfba |
work_keys_str_mv |
AT shaistarafique costeffectivedyesensitizedsolarcellbasedonnovelcupolypyrrolemultiwallcarbonnanotubesnanocompositescounterelectrode AT imranrashid costeffectivedyesensitizedsolarcellbasedonnovelcupolypyrrolemultiwallcarbonnanotubesnanocompositescounterelectrode AT rehanasharif costeffectivedyesensitizedsolarcellbasedonnovelcupolypyrrolemultiwallcarbonnanotubesnanocompositescounterelectrode |
_version_ |
1718384019322699776 |