Development and evaluation of an artificial intelligence system for COVID-19 diagnosis

In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results.

Guardado en:
Detalles Bibliográficos
Autores principales: Cheng Jin, Weixiang Chen, Yukun Cao, Zhanwei Xu, Zimeng Tan, Xin Zhang, Lei Deng, Chuansheng Zheng, Jie Zhou, Heshui Shi, Jianjiang Feng
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/d4872dc51bfb45c682ed26ba2c2d2654
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d4872dc51bfb45c682ed26ba2c2d2654
record_format dspace
spelling oai:doaj.org-article:d4872dc51bfb45c682ed26ba2c2d26542021-12-02T18:01:50ZDevelopment and evaluation of an artificial intelligence system for COVID-19 diagnosis10.1038/s41467-020-18685-12041-1723https://doaj.org/article/d4872dc51bfb45c682ed26ba2c2d26542020-10-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18685-1https://doaj.org/toc/2041-1723In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results.Cheng JinWeixiang ChenYukun CaoZhanwei XuZimeng TanXin ZhangLei DengChuansheng ZhengJie ZhouHeshui ShiJianjiang FengNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Cheng Jin
Weixiang Chen
Yukun Cao
Zhanwei Xu
Zimeng Tan
Xin Zhang
Lei Deng
Chuansheng Zheng
Jie Zhou
Heshui Shi
Jianjiang Feng
Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
description In some contexts, rapid detection of COVID-19 from CT scans can be crucial for optimal patient management. Here, the authors present a Deep Learning system for this task with multi-center data, human reader comparison and age stratified results.
format article
author Cheng Jin
Weixiang Chen
Yukun Cao
Zhanwei Xu
Zimeng Tan
Xin Zhang
Lei Deng
Chuansheng Zheng
Jie Zhou
Heshui Shi
Jianjiang Feng
author_facet Cheng Jin
Weixiang Chen
Yukun Cao
Zhanwei Xu
Zimeng Tan
Xin Zhang
Lei Deng
Chuansheng Zheng
Jie Zhou
Heshui Shi
Jianjiang Feng
author_sort Cheng Jin
title Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
title_short Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
title_full Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
title_fullStr Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
title_full_unstemmed Development and evaluation of an artificial intelligence system for COVID-19 diagnosis
title_sort development and evaluation of an artificial intelligence system for covid-19 diagnosis
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/d4872dc51bfb45c682ed26ba2c2d2654
work_keys_str_mv AT chengjin developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT weixiangchen developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT yukuncao developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT zhanweixu developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT zimengtan developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT xinzhang developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT leideng developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT chuanshengzheng developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT jiezhou developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT heshuishi developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
AT jianjiangfeng developmentandevaluationofanartificialintelligencesystemforcovid19diagnosis
_version_ 1718378957108150272