AI delivers Michaelis constants as fuel for genome-scale metabolic models.

Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.

Guardado en:
Detalles Bibliográficos
Autores principales: Albert A Antolin, Marta Cascante
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/d48d636199744821bf2829e128f6ac9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.