AI delivers Michaelis constants as fuel for genome-scale metabolic models.
Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d48d636199744821bf2829e128f6ac9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism. |
---|