AI delivers Michaelis constants as fuel for genome-scale metabolic models.
Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d48d636199744821bf2829e128f6ac9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d48d636199744821bf2829e128f6ac9e |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d48d636199744821bf2829e128f6ac9e2021-11-25T05:34:15ZAI delivers Michaelis constants as fuel for genome-scale metabolic models.1544-91731545-788510.1371/journal.pbio.3001415https://doaj.org/article/d48d636199744821bf2829e128f6ac9e2021-10-01T00:00:00Zhttps://doi.org/10.1371/journal.pbio.3001415https://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.Albert A AntolinMarta CascantePublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 19, Iss 10, p e3001415 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Albert A Antolin Marta Cascante AI delivers Michaelis constants as fuel for genome-scale metabolic models. |
description |
Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism. |
format |
article |
author |
Albert A Antolin Marta Cascante |
author_facet |
Albert A Antolin Marta Cascante |
author_sort |
Albert A Antolin |
title |
AI delivers Michaelis constants as fuel for genome-scale metabolic models. |
title_short |
AI delivers Michaelis constants as fuel for genome-scale metabolic models. |
title_full |
AI delivers Michaelis constants as fuel for genome-scale metabolic models. |
title_fullStr |
AI delivers Michaelis constants as fuel for genome-scale metabolic models. |
title_full_unstemmed |
AI delivers Michaelis constants as fuel for genome-scale metabolic models. |
title_sort |
ai delivers michaelis constants as fuel for genome-scale metabolic models. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/d48d636199744821bf2829e128f6ac9e |
work_keys_str_mv |
AT albertaantolin aideliversmichaelisconstantsasfuelforgenomescalemetabolicmodels AT martacascante aideliversmichaelisconstantsasfuelforgenomescalemetabolicmodels |
_version_ |
1718414606662107136 |