AI delivers Michaelis constants as fuel for genome-scale metabolic models.

Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.

Guardado en:
Detalles Bibliográficos
Autores principales: Albert A Antolin, Marta Cascante
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
Acceso en línea:https://doaj.org/article/d48d636199744821bf2829e128f6ac9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d48d636199744821bf2829e128f6ac9e
record_format dspace
spelling oai:doaj.org-article:d48d636199744821bf2829e128f6ac9e2021-11-25T05:34:15ZAI delivers Michaelis constants as fuel for genome-scale metabolic models.1544-91731545-788510.1371/journal.pbio.3001415https://doaj.org/article/d48d636199744821bf2829e128f6ac9e2021-10-01T00:00:00Zhttps://doi.org/10.1371/journal.pbio.3001415https://doaj.org/toc/1544-9173https://doaj.org/toc/1545-7885Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.Albert A AntolinMarta CascantePublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Biology, Vol 19, Iss 10, p e3001415 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Albert A Antolin
Marta Cascante
AI delivers Michaelis constants as fuel for genome-scale metabolic models.
description Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.
format article
author Albert A Antolin
Marta Cascante
author_facet Albert A Antolin
Marta Cascante
author_sort Albert A Antolin
title AI delivers Michaelis constants as fuel for genome-scale metabolic models.
title_short AI delivers Michaelis constants as fuel for genome-scale metabolic models.
title_full AI delivers Michaelis constants as fuel for genome-scale metabolic models.
title_fullStr AI delivers Michaelis constants as fuel for genome-scale metabolic models.
title_full_unstemmed AI delivers Michaelis constants as fuel for genome-scale metabolic models.
title_sort ai delivers michaelis constants as fuel for genome-scale metabolic models.
publisher Public Library of Science (PLoS)
publishDate 2021
url https://doaj.org/article/d48d636199744821bf2829e128f6ac9e
work_keys_str_mv AT albertaantolin aideliversmichaelisconstantsasfuelforgenomescalemetabolicmodels
AT martacascante aideliversmichaelisconstantsasfuelforgenomescalemetabolicmodels
_version_ 1718414606662107136