AI delivers Michaelis constants as fuel for genome-scale metabolic models.
Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.
Guardado en:
Autores principales: | Albert A Antolin, Marta Cascante |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d48d636199744821bf2829e128f6ac9e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning allows genome-scale prediction of Michaelis constants from structural features.
por: Alexander Kroll, et al.
Publicado: (2021) -
Comparison of metabolic states using genome-scale metabolic models.
por: Chaitra Sarathy, et al.
Publicado: (2021) -
Comparison of metabolic states using genome-scale metabolic models
por: Chaitra Sarathy, et al.
Publicado: (2021) -
Predicting growth of the healthy infant using a genome scale metabolic model
por: Avlant Nilsson, et al.
Publicado: (2017) -
ΔFBA-Predicting metabolic flux alterations using genome-scale metabolic models and differential transcriptomic data.
por: Sudharshan Ravi, et al.
Publicado: (2021)