Reconstructing missing complex networks against adversarial interventions
Recovering the properties of a network which has suffered adversarial intervention can find applications in uncovering targeted attacks on social networks. Here the authors propose a causal statistical inference framework for reconstructing a network which has suffered non-random, targeted attacks.
Guardado en:
Autores principales: | Yuankun Xue, Paul Bogdan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d495c19c7ec54eaab6477d81ca576455 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reliable Multi-Fractal Characterization of Weighted Complex Networks: Algorithms and Implications
por: Yuankun Xue, et al.
Publicado: (2017) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021) -
Adversarial Attack for SAR Target Recognition Based on UNet-Generative Adversarial Network
por: Chuan Du, et al.
Publicado: (2021) -
Detect Adversarial Attacks Against Deep Neural Networks With GPU Monitoring
por: Tommaso Zoppi, et al.
Publicado: (2021) -
Deep learning for irregularly and regularly missing data reconstruction
por: Xintao Chai, et al.
Publicado: (2020)