Exploring the chemical space of protein–protein interaction inhibitors through machine learning
Abstract Although protein–protein interactions (PPIs) have emerged as the basis of potential new therapeutic approaches, targeting intracellular PPIs with small molecule inhibitors is conventionally considered highly challenging. Driven by increasing research efforts, success rates have increased si...
Guardado en:
Autores principales: | Jiwon Choi, Jun Seop Yun, Hyeeun Song, Nam Hee Kim, Hyun Sil Kim, Jong In Yook |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4b406ee4e724930b430cee4e2117dfb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Explore Protein Conformational Space With Variational Autoencoder
por: Hao Tian, et al.
Publicado: (2021) -
Machine learning in chemical reaction space
por: Sina Stocker, et al.
Publicado: (2020) -
Exploring protein dynamics space: the dynasome as the missing link between protein structure and function.
por: Ulf Hensen, et al.
Publicado: (2012) -
Diversity-oriented synthetic strategy for developing a chemical modulator of protein–protein interaction
por: Jonghoon Kim, et al.
Publicado: (2016) -
Identifying chemicals with potential therapy of HIV based on protein-protein and protein-chemical interaction network.
por: Bi-Qing Li, et al.
Publicado: (2013)