On the Number of Conjugate Classes of Derangements
The number of conjugate classes of derangements of order n is the same as the number hn of the restricted partitions with every portion greater than 1. It is also equal to the number of isotopy classes of 2×n Latin rectangles. Sometimes the exact value is necessary, while sometimes we need the appro...
Guardado en:
Autores principales: | Wen-Wei Li, Zhong-Lin Cheng, Jia-Bao Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Hindawi Limited
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4ba643404bc434583368b34cd223897 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Two Classes of Infrasoft Separation Axioms
por: Tareq M. Al-shami, et al.
Publicado: (2021) -
Lie Symmetry Analysis for the General Classes of Generalized Modified Kuramoto-Sivashinsky Equation
por: Rong Qi, et al.
Publicado: (2021) -
A Class of New Permutation Polynomials over F2n
por: Qian Liu, et al.
Publicado: (2021) -
On the Chebyshev Polynomial for a Certain Class of Analytic Univalent Functions
por: Shahram Najafzadeh, et al.
Publicado: (2021) -
A Comprehensive Family of Biunivalent Functions Defined by k-Fibonacci Numbers
por: Basem Aref Frasin, et al.
Publicado: (2021)