Predicting phase behavior of grain boundaries with evolutionary search and machine learning

The atomic structure of grain boundary phases remains unknown and is difficult to investigate experimentally. Here, the authors use an evolutionary algorithm to computationally explore interface structures in higher dimensions and predict low-energy configurations, showing interface phases may be ub...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Qiang Zhu, Amit Samanta, Bingxi Li, Robert E. Rudd, Timofey Frolov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
Q
Acceso en línea:https://doaj.org/article/d4cc71fc2b0342fbb5d2ec4dbcad7d19
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The atomic structure of grain boundary phases remains unknown and is difficult to investigate experimentally. Here, the authors use an evolutionary algorithm to computationally explore interface structures in higher dimensions and predict low-energy configurations, showing interface phases may be ubiquitous.