Predicting phase behavior of grain boundaries with evolutionary search and machine learning

The atomic structure of grain boundary phases remains unknown and is difficult to investigate experimentally. Here, the authors use an evolutionary algorithm to computationally explore interface structures in higher dimensions and predict low-energy configurations, showing interface phases may be ub...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Qiang Zhu, Amit Samanta, Bingxi Li, Robert E. Rudd, Timofey Frolov
Format: article
Langue:EN
Publié: Nature Portfolio 2018
Sujets:
Q
Accès en ligne:https://doaj.org/article/d4cc71fc2b0342fbb5d2ec4dbcad7d19
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

Documents similaires