Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.
In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accu...
Guardado en:
Autores principales: | , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4d88aaa739445c99c721e30223b4003 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d4d88aaa739445c99c721e30223b4003 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d4d88aaa739445c99c721e30223b40032021-11-18T08:26:37ZFast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners.1932-620310.1371/journal.pone.0092721https://doaj.org/article/d4d88aaa739445c99c721e30223b40032014-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24663061/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code.Carlo BaldassiMarco ZamparoChristoph FeinauerAndrea ProcacciniRiccardo ZecchinaMartin WeigtAndrea PagnaniPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 9, Iss 3, p e92721 (2014) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Carlo Baldassi Marco Zamparo Christoph Feinauer Andrea Procaccini Riccardo Zecchina Martin Weigt Andrea Pagnani Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. |
description |
In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code. |
format |
article |
author |
Carlo Baldassi Marco Zamparo Christoph Feinauer Andrea Procaccini Riccardo Zecchina Martin Weigt Andrea Pagnani |
author_facet |
Carlo Baldassi Marco Zamparo Christoph Feinauer Andrea Procaccini Riccardo Zecchina Martin Weigt Andrea Pagnani |
author_sort |
Carlo Baldassi |
title |
Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. |
title_short |
Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. |
title_full |
Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. |
title_fullStr |
Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. |
title_full_unstemmed |
Fast and accurate multivariate Gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. |
title_sort |
fast and accurate multivariate gaussian modeling of protein families: predicting residue contacts and protein-interaction partners. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2014 |
url |
https://doaj.org/article/d4d88aaa739445c99c721e30223b4003 |
work_keys_str_mv |
AT carlobaldassi fastandaccuratemultivariategaussianmodelingofproteinfamiliespredictingresiduecontactsandproteininteractionpartners AT marcozamparo fastandaccuratemultivariategaussianmodelingofproteinfamiliespredictingresiduecontactsandproteininteractionpartners AT christophfeinauer fastandaccuratemultivariategaussianmodelingofproteinfamiliespredictingresiduecontactsandproteininteractionpartners AT andreaprocaccini fastandaccuratemultivariategaussianmodelingofproteinfamiliespredictingresiduecontactsandproteininteractionpartners AT riccardozecchina fastandaccuratemultivariategaussianmodelingofproteinfamiliespredictingresiduecontactsandproteininteractionpartners AT martinweigt fastandaccuratemultivariategaussianmodelingofproteinfamiliespredictingresiduecontactsandproteininteractionpartners AT andreapagnani fastandaccuratemultivariategaussianmodelingofproteinfamiliespredictingresiduecontactsandproteininteractionpartners |
_version_ |
1718421829964529664 |