A deep learning model to predict RNA-Seq expression of tumours from whole slide images
RNA-sequencing of tumour tissue can provide important diagnostic and prognostic information but this is costly and not routinely performed in all clinical settings. Here, the authors show that whole slide histology slides—part of routine care—can be used to predict RNA-sequencing data and thus reduc...
Enregistré dans:
Auteurs principaux: | Benoît Schmauch, Alberto Romagnoni, Elodie Pronier, Charlie Saillard, Pascale Maillé, Julien Calderaro, Aurélie Kamoun, Meriem Sefta, Sylvain Toldo, Mikhail Zaslavskiy, Thomas Clozel, Matahi Moarii, Pierre Courtiol, Gilles Wainrib |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2020
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d4db17b3e50d44079b75aaf30a53561e |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Epigenomic alterations in breast carcinoma from primary tumor to locoregional recurrences.
par: Matahi Moarii, et autres
Publié: (2014) -
Sliding of coherent twin boundaries
par: Zhang-Jie Wang, et autres
Publié: (2017) -
Semantic focusing allows fully automated single-layer slide scanning of cervical cytology slides.
par: Bernd Lahrmann, et autres
Publié: (2013) -
Scaling theory of rubber sliding friction
par: Reinhard Hentschke, et autres
Publié: (2021) -
Transcription activation by a sliding clamp
par: Jing Shi, et autres
Publié: (2021)