The FAD synthetase from the human pathogen Streptococcus pneumoniae: a bifunctional enzyme exhibiting activity-dependent redox requirements

Abstract Prokaryotic bifunctional FAD synthetases (FADSs) catalyze the biosynthesis of FMN and FAD, whereas in eukaryotes two enzymes are required for the same purpose. FMN and FAD are key cofactors to maintain the flavoproteome homeostasis in all type of organisms. Here we shed light to the propert...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: María Sebastián, Erandi Lira-Navarrete, Ana Serrano, Carlos Marcuello, Adrián Velázquez-Campoy, Anabel Lostao, Ramón Hurtado-Guerrero, Milagros Medina, Marta Martínez-Júlvez
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d4edd25e669b41d59c704c9da5d7440d
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Prokaryotic bifunctional FAD synthetases (FADSs) catalyze the biosynthesis of FMN and FAD, whereas in eukaryotes two enzymes are required for the same purpose. FMN and FAD are key cofactors to maintain the flavoproteome homeostasis in all type of organisms. Here we shed light to the properties of the hitherto unstudied bacterial FADS from the human pathogen Streptococcus pneumoniae (SpnFADS). As other members of the family, SpnFADS catalyzes the three typical activities of prokaryotic FADSs: riboflavin kinase (RFK), ATP:FMN:adenylyltransferase (FMNAT), and FAD pyrophosphorylase (FADpp). However, several SpnFADS biophysical properties differ from those of other family members. In particular; i) the RFK activity is not inhibited by the riboflavin (RF) substrate, ii) the FMNAT and FADSpp activities require flavin substrates in the reduced state, iii) binding of adenine nucleotide ligands is required for the binding of flavinic substrates/products and iv) the monomer is the preferred state. Collectively, our results add interesting mechanistic differences among the few prokaryotic bifunctional FADSs already characterized, which might reflect the adaptation of the enzyme to relatively different environments. In a health point of view, differences among FADS family members provide us with a framework to design selective compounds targeting these enzymes for the treatment of diverse infectious diseases.