Second opinion needed: communicating uncertainty in medical machine learning
Abstract There is great excitement that medical artificial intelligence (AI) based on machine learning (ML) can be used to improve decision making at the patient level in a variety of healthcare settings. However, the quantification and communication of uncertainty for individual predictions is ofte...
Guardado en:
Autores principales: | Benjamin Kompa, Jasper Snoek, Andrew L. Beam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4f85d7dd17c413e9a36056423ac1ba9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
The need for a system view to regulate artificial intelligence/machine learning-based software as medical device
por: Sara Gerke, et al.
Publicado: (2020) -
Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians?
por: Brett K. Beaulieu-Jones, et al.
Publicado: (2021) -
What do medical students actually need to know about artificial intelligence?
por: Liam G. McCoy, et al.
Publicado: (2020) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
por: Dae Y. Kang, et al.
Publicado: (2021) -
Effectiveness of a digital therapeutic as adjunct to treatment with medication in pediatric ADHD
por: Scott H. Kollins, et al.
Publicado: (2021)