Second opinion needed: communicating uncertainty in medical machine learning
Abstract There is great excitement that medical artificial intelligence (AI) based on machine learning (ML) can be used to improve decision making at the patient level in a variety of healthcare settings. However, the quantification and communication of uncertainty for individual predictions is ofte...
Enregistré dans:
Auteurs principaux: | Benjamin Kompa, Jasper Snoek, Andrew L. Beam |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d4f85d7dd17c413e9a36056423ac1ba9 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
The need for a system view to regulate artificial intelligence/machine learning-based software as medical device
par: Sara Gerke, et autres
Publié: (2020) -
Machine learning for patient risk stratification: standing on, or looking over, the shoulders of clinicians?
par: Brett K. Beaulieu-Jones, et autres
Publié: (2021) -
What do medical students actually need to know about artificial intelligence?
par: Liam G. McCoy, et autres
Publié: (2020) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
par: Dae Y. Kang, et autres
Publié: (2021) -
Effectiveness of a digital therapeutic as adjunct to treatment with medication in pediatric ADHD
par: Scott H. Kollins, et autres
Publié: (2021)