Evaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing
Multi-channel Impact-echo (IE) testing was used to evaluate debonding defects at the interface between track concrete layer, TCL, and hydraulically stabilized base course, HSB, in a real scale mockup model of concrete slab tracks for Korea high-speed railway (KHSR) system. The mockup model includes...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d4fdc218b80a4f85a77c19d40934fa31 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d4fdc218b80a4f85a77c19d40934fa31 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d4fdc218b80a4f85a77c19d40934fa312021-11-11T19:06:22ZEvaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing10.3390/s212170911424-8220https://doaj.org/article/d4fdc218b80a4f85a77c19d40934fa312021-10-01T00:00:00Zhttps://www.mdpi.com/1424-8220/21/21/7091https://doaj.org/toc/1424-8220Multi-channel Impact-echo (IE) testing was used to evaluate debonding defects at the interface between track concrete layer, TCL, and hydraulically stabilized base course, HSB, in a real scale mockup model of concrete slab tracks for Korea high-speed railway (KHSR) system. The mockup model includes three debonding defects that were fabricated by inserting three 400 mm by 400 mm (length and width) thin plastic foam boards with three different thicknesses of 5 mm, 10 mm, and 15 mm, before casting concrete in TCL. Multi-channel IE signals obtained over solid concrete and debonding defects were reduced to three critical IE testing parameters (the velocity of concrete, peak frequency, and <i>Q</i> factor). Bilinear classification models were used to evaluate the individual and a combination of the characteristic parameters. It was demonstrated that the best evaluation performance was obtained by using average peak frequency or the combination of average peak frequency and average <i>Q</i> factor, obtained by eight accelerometers in the multi-channel IE device. The results and discussion in this study would improve the understanding of characteristics of multiple IE testing parameters in concrete slab tracks and provide a fundamental basis to develop an effective prediction model of non-destructive evaluation for debonding defects at the interface between TCL and HSB in concrete slab tracks.Jin-Wook LeeSung-Jin LeeSeong-Hoon KeeMDPI AGarticleconcrete slab trackdebonding defectsmulti-channel IE testingdata reductionnon-destructive evaluationChemical technologyTP1-1185ENSensors, Vol 21, Iss 7091, p 7091 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
concrete slab track debonding defects multi-channel IE testing data reduction non-destructive evaluation Chemical technology TP1-1185 |
spellingShingle |
concrete slab track debonding defects multi-channel IE testing data reduction non-destructive evaluation Chemical technology TP1-1185 Jin-Wook Lee Sung-Jin Lee Seong-Hoon Kee Evaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing |
description |
Multi-channel Impact-echo (IE) testing was used to evaluate debonding defects at the interface between track concrete layer, TCL, and hydraulically stabilized base course, HSB, in a real scale mockup model of concrete slab tracks for Korea high-speed railway (KHSR) system. The mockup model includes three debonding defects that were fabricated by inserting three 400 mm by 400 mm (length and width) thin plastic foam boards with three different thicknesses of 5 mm, 10 mm, and 15 mm, before casting concrete in TCL. Multi-channel IE signals obtained over solid concrete and debonding defects were reduced to three critical IE testing parameters (the velocity of concrete, peak frequency, and <i>Q</i> factor). Bilinear classification models were used to evaluate the individual and a combination of the characteristic parameters. It was demonstrated that the best evaluation performance was obtained by using average peak frequency or the combination of average peak frequency and average <i>Q</i> factor, obtained by eight accelerometers in the multi-channel IE device. The results and discussion in this study would improve the understanding of characteristics of multiple IE testing parameters in concrete slab tracks and provide a fundamental basis to develop an effective prediction model of non-destructive evaluation for debonding defects at the interface between TCL and HSB in concrete slab tracks. |
format |
article |
author |
Jin-Wook Lee Sung-Jin Lee Seong-Hoon Kee |
author_facet |
Jin-Wook Lee Sung-Jin Lee Seong-Hoon Kee |
author_sort |
Jin-Wook Lee |
title |
Evaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing |
title_short |
Evaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing |
title_full |
Evaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing |
title_fullStr |
Evaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing |
title_full_unstemmed |
Evaluation of a Concrete Slab Track with Debonding at the Interface between Track Concrete Layer and Hydraulically Stabilized Base Course Using Multi-Channel Impact-Echo Testing |
title_sort |
evaluation of a concrete slab track with debonding at the interface between track concrete layer and hydraulically stabilized base course using multi-channel impact-echo testing |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/d4fdc218b80a4f85a77c19d40934fa31 |
work_keys_str_mv |
AT jinwooklee evaluationofaconcreteslabtrackwithdebondingattheinterfacebetweentrackconcretelayerandhydraulicallystabilizedbasecourseusingmultichannelimpactechotesting AT sungjinlee evaluationofaconcreteslabtrackwithdebondingattheinterfacebetweentrackconcretelayerandhydraulicallystabilizedbasecourseusingmultichannelimpactechotesting AT seonghoonkee evaluationofaconcreteslabtrackwithdebondingattheinterfacebetweentrackconcretelayerandhydraulicallystabilizedbasecourseusingmultichannelimpactechotesting |
_version_ |
1718431612967845888 |