Machine-learning-revealed statistics of the particle-carbon/binder detachment in lithium-ion battery cathodes
Developing understanding of degradation phenomena in nickel rich cathodes is under intense investigation. Here the authors use learning-assisted statistical analysis and experiment-informed mathematical modelling to resolve the microstructure of a Ni-rich NMC composite cathode.
Guardado en:
Autores principales: | Zhisen Jiang, Jizhou Li, Yang Yang, Linqin Mu, Chenxi Wei, Xiqian Yu, Piero Pianetta, Kejie Zhao, Peter Cloetens, Feng Lin, Yijin Liu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d50a812eeddf43fb90c08ddfa098a381 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Propagation topography of redox phase transformations in heterogeneous layered oxide cathode materials
por: Linqin Mu, et al.
Publicado: (2018) -
Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery
por: Ruoqian Lin, et al.
Publicado: (2019) -
A reflection on lithium-ion battery cathode chemistry
por: Arumugam Manthiram
Publicado: (2020) -
Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries
por: Shuaifeng Lou, et al.
Publicado: (2020) -
Unlocking the passivation nature of the cathode–air interfacial reactions in lithium ion batteries
por: Lianfeng Zou, et al.
Publicado: (2020)