On Soliton Solutions of Perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon Equations
Nonlinear science is a fundamental science frontier that includes research in the common properties of nonlinear phenomena. This article is devoted for the study of new extended hyperbolic function method (EHFM) to attain the exact soliton solutions of the perturbed Boussinesq equation (PBE) and KdV...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d513287071754d5facf01553de262453 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Nonlinear science is a fundamental science frontier that includes research in the common properties of nonlinear phenomena. This article is devoted for the study of new extended hyperbolic function method (EHFM) to attain the exact soliton solutions of the perturbed Boussinesq equation (PBE) and KdV–Caudery–Dodd–Gibbon (KdV-CDG) equation. We can claim that these solutions are new and are not previously presented in the literature. In addition, 2d and 3d graphics are drawn to exhibit the physical behavior of obtained new exact solutions. |
---|