On Soliton Solutions of Perturbed Boussinesq and KdV-Caudery-Dodd-Gibbon Equations
Nonlinear science is a fundamental science frontier that includes research in the common properties of nonlinear phenomena. This article is devoted for the study of new extended hyperbolic function method (EHFM) to attain the exact soliton solutions of the perturbed Boussinesq equation (PBE) and KdV...
Guardado en:
Autores principales: | Muhammad Imran Asjad, Hamood Ur Rehman, Zunaira Ishfaq, Jan Awrejcewicz, Ali Akgül, Muhammad Bilal Riaz |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d513287071754d5facf01553de262453 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Existence and nonlinear stability of solitary wave solutions for coupled Schrodinger-KdV systems
por: Pengxue Cui, et al.
Publicado: (2021) -
Closed-form solutions and conservation laws of a generalized Hirota–Satsuma coupled KdV system of fluid mechanics
por: Khalique Chaudry Masood
Publicado: (2021) -
Comparison of modified ADM and classical finite difference method for some third-order and fifth-order KdV equations
por: Appadu Appanah Rao, et al.
Publicado: (2021) -
Linear and Nonlinear Electrostatic Excitations and Their Stability in a Nonextensive Anisotropic Magnetoplasma
por: Muhammad Khalid, et al.
Publicado: (2021) -
Optical solitons via the collective variable method for the classical and perturbed Chen–Lee–Liu equations
por: Alrashed Reyouf, et al.
Publicado: (2021)