Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood

The next generation sequencing has provided the opportunity to look for signatures of carcinogenesis on a genome wide scale. Here, the authors develop the algorithm, sigLASSO, that provides confidence in assigning mutational signatures when the mutation count is low and the samples used are variable...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shantao Li, Forrest W. Crawford, Mark B. Gerstein
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/d51810b840e24277acd8a315057999a1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d51810b840e24277acd8a315057999a1
record_format dspace
spelling oai:doaj.org-article:d51810b840e24277acd8a315057999a12021-12-02T15:33:17ZUsing sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood10.1038/s41467-020-17388-x2041-1723https://doaj.org/article/d51810b840e24277acd8a315057999a12020-07-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-17388-xhttps://doaj.org/toc/2041-1723The next generation sequencing has provided the opportunity to look for signatures of carcinogenesis on a genome wide scale. Here, the authors develop the algorithm, sigLASSO, that provides confidence in assigning mutational signatures when the mutation count is low and the samples used are variable.Shantao LiForrest W. CrawfordMark B. GersteinNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Shantao Li
Forrest W. Crawford
Mark B. Gerstein
Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
description The next generation sequencing has provided the opportunity to look for signatures of carcinogenesis on a genome wide scale. Here, the authors develop the algorithm, sigLASSO, that provides confidence in assigning mutational signatures when the mutation count is low and the samples used are variable.
format article
author Shantao Li
Forrest W. Crawford
Mark B. Gerstein
author_facet Shantao Li
Forrest W. Crawford
Mark B. Gerstein
author_sort Shantao Li
title Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
title_short Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
title_full Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
title_fullStr Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
title_full_unstemmed Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
title_sort using siglasso to optimize cancer mutation signatures jointly with sampling likelihood
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/d51810b840e24277acd8a315057999a1
work_keys_str_mv AT shantaoli usingsiglassotooptimizecancermutationsignaturesjointlywithsamplinglikelihood
AT forrestwcrawford usingsiglassotooptimizecancermutationsignaturesjointlywithsamplinglikelihood
AT markbgerstein usingsiglassotooptimizecancermutationsignaturesjointlywithsamplinglikelihood
_version_ 1718387112094466048