Using sigLASSO to optimize cancer mutation signatures jointly with sampling likelihood
The next generation sequencing has provided the opportunity to look for signatures of carcinogenesis on a genome wide scale. Here, the authors develop the algorithm, sigLASSO, that provides confidence in assigning mutational signatures when the mutation count is low and the samples used are variable...
Guardado en:
Autores principales: | Shantao Li, Forrest W. Crawford, Mark B. Gerstein |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d51810b840e24277acd8a315057999a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig
por: Yulia Rubanova, et al.
Publicado: (2020) -
CloneSig can jointly infer intra-tumor heterogeneity and mutational signature activity in bulk tumor sequencing data
por: Judith Abécassis, et al.
Publicado: (2021) -
Mutational signatures are jointly shaped by DNA damage and repair
por: Nadezda V. Volkova, et al.
Publicado: (2020) -
Joint Modelling Approaches to Survival Analysis via Likelihood-Based Boosting Techniques
por: Colin Griesbach, et al.
Publicado: (2021) -
Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples
por: Matthew H. Bailey, et al.
Publicado: (2020)