Flavokawain A induces apoptosis in MCF-7 and MDA-MB231 and inhibits the metastatic process in vitro.

<h4>Introduction</h4>The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Nadiah Abu, M Nadeem Akhtar, Swee Keong Yeap, Kian Lam Lim, Wan Yong Ho, Aimi Jamil Zulfadli, Abdul Rahman Omar, Mohd Roslan Sulaiman, Mohd Puad Abdullah, Noorjahan Banu Alitheen
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2014
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d51a2b5cdfd14d04a1b3630fdeb4fe4c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Introduction</h4>The kava-kava plant (Piper methsyticum) is traditionally known as the pacific elixir by the pacific islanders for its role in a wide range of biological activities. The extract of the roots of this plant contains a variety of interesting molecules including Flavokawain A and this molecule is known to have anti-cancer properties. Breast cancer is still one of the leading diagnosed cancers in women today. The metastatic process is also very pertinent in the progression of tumorigenesis.<h4>Methods</h4>MCF-7 and MDA-MB231 cells were treated with several concentrations of FKA. The apoptotic analysis was done through the MTT assay, BrdU assay, Annexin V analysis, cell cycle analysis, JC-1 mitochondrial dye, AO/PI dual staining, caspase 8/9 fluorometric assay, quantitative real time PCR and western blot. For the metastatic assays, the in vitro scratch assay, trans-well migration/invasion assay, HUVEC tube formation assay, ex vivo rat aortic ring assay, quantitative real time PCR and western blot were employed.<h4>Results</h4>We have investigated the effects of FKA on the apoptotic and metastatic process in two breast cancer cell lines. FKA induces apoptosis in both MCF-7 and MDA-MB231 in a dose dependent manner through the intrinsic mitochondrial pathway. Additionally, FKA selectively induces a G2/M arrest in the cell cycle machinery of MDA-MB231 and G1 arrest in MCF-7. This suggests that FKA's anti-cancer activity is dependent on the p53 status. Moreover, FKA also halted the migration and invasion process in MDA-MB231. The similar effects can be seen in the inhibition of the angiogenesis process as well.<h4>Conclusions</h4>FKA managed to induce apoptosis and inhibit the metastatic process in two breast cancer cell lines, in vitro. Overall, FKA may serve as a promising candidate in the search of a new anti-cancer drug especially in halting the metastatic process but further in vivo evidence is needed.