Recalculation of error growth models' parameters for the ECMWF forecast system

<p>This article provides a new estimate of error growth models' parameters approximating predictability curves and their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest Lyapunov exponent are also provided, along with...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: H. Bednář, A. Raidl, J. Mikšovský
Formato: article
Lenguaje:EN
Publicado: Copernicus Publications 2021
Materias:
Acceso en línea:https://doaj.org/article/d53a62f9ff5547ae8c8c14e25e8abea4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d53a62f9ff5547ae8c8c14e25e8abea4
record_format dspace
spelling oai:doaj.org-article:d53a62f9ff5547ae8c8c14e25e8abea42021-12-01T07:56:13ZRecalculation of error growth models' parameters for the ECMWF forecast system10.5194/gmd-14-7377-20211991-959X1991-9603https://doaj.org/article/d53a62f9ff5547ae8c8c14e25e8abea42021-12-01T00:00:00Zhttps://gmd.copernicus.org/articles/14/7377/2021/gmd-14-7377-2021.pdfhttps://doaj.org/toc/1991-959Xhttps://doaj.org/toc/1991-9603<p>This article provides a new estimate of error growth models' parameters approximating predictability curves and their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed correction is based on the ability of the Lorenz (2005) system to simulate the predictability curve of the ECMWF forecasting system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov exponent (<span class="inline-formula"><i>λ</i>=0.35</span> d<span class="inline-formula"><sup>−1</sup></span>) and limit value of the predictability curve (<span class="inline-formula"><i>E</i><sub>∞</sub>=8.2</span>) of the Lorenz system. Parameters are calculated from the quadratic model with and without model error, as well as by the logarithmic, general, and hyperbolic tangent models. The average value of the largest Lyapunov exponent is estimated to be in the <span class="inline-formula"><i>&lt;</i></span> 0.32; 0.41 <span class="inline-formula"><i>&gt;</i></span> d<span class="inline-formula"><sup>−1</sup></span> range for the ECMWF forecasting system; limit values of the predictability curves are estimated with lower theoretically derived values, and a new approach for the calculation of model error based on comparison of models is presented.</p>H. BednářA. RaidlJ. MikšovskýCopernicus PublicationsarticleGeologyQE1-996.5ENGeoscientific Model Development, Vol 14, Pp 7377-7389 (2021)
institution DOAJ
collection DOAJ
language EN
topic Geology
QE1-996.5
spellingShingle Geology
QE1-996.5
H. Bednář
A. Raidl
J. Mikšovský
Recalculation of error growth models' parameters for the ECMWF forecast system
description <p>This article provides a new estimate of error growth models' parameters approximating predictability curves and their differentials, calculated from data of the ECMWF forecast system over the 1986 to 2011 period. Estimates of the largest Lyapunov exponent are also provided, along with model error and the limit value of the predictability curve. The proposed correction is based on the ability of the Lorenz (2005) system to simulate the predictability curve of the ECMWF forecasting system and on comparing the parameters estimated for both these systems, as well as on comparison with the largest Lyapunov exponent (<span class="inline-formula"><i>λ</i>=0.35</span> d<span class="inline-formula"><sup>−1</sup></span>) and limit value of the predictability curve (<span class="inline-formula"><i>E</i><sub>∞</sub>=8.2</span>) of the Lorenz system. Parameters are calculated from the quadratic model with and without model error, as well as by the logarithmic, general, and hyperbolic tangent models. The average value of the largest Lyapunov exponent is estimated to be in the <span class="inline-formula"><i>&lt;</i></span> 0.32; 0.41 <span class="inline-formula"><i>&gt;</i></span> d<span class="inline-formula"><sup>−1</sup></span> range for the ECMWF forecasting system; limit values of the predictability curves are estimated with lower theoretically derived values, and a new approach for the calculation of model error based on comparison of models is presented.</p>
format article
author H. Bednář
A. Raidl
J. Mikšovský
author_facet H. Bednář
A. Raidl
J. Mikšovský
author_sort H. Bednář
title Recalculation of error growth models' parameters for the ECMWF forecast system
title_short Recalculation of error growth models' parameters for the ECMWF forecast system
title_full Recalculation of error growth models' parameters for the ECMWF forecast system
title_fullStr Recalculation of error growth models' parameters for the ECMWF forecast system
title_full_unstemmed Recalculation of error growth models' parameters for the ECMWF forecast system
title_sort recalculation of error growth models' parameters for the ecmwf forecast system
publisher Copernicus Publications
publishDate 2021
url https://doaj.org/article/d53a62f9ff5547ae8c8c14e25e8abea4
work_keys_str_mv AT hbednar recalculationoferrorgrowthmodelsparametersfortheecmwfforecastsystem
AT araidl recalculationoferrorgrowthmodelsparametersfortheecmwfforecastsystem
AT jmiksovsky recalculationoferrorgrowthmodelsparametersfortheecmwfforecastsystem
_version_ 1718405444606623744