Author Correction: Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
Guardado en:
Autores principales: | Xueyi Zheng, Zhao Yao, Yini Huang, Yanyan Yu, Yun Wang, Yubo Liu, Rushuang Mao, Fei Li, Yang Xiao, Yuanyuan Wang, Yixin Hu, Jinhua Yu, Jianhua Zhou |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d55044f5ec654ae9aa58cc6952e446c4 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer
por: Xueyi Zheng, et al.
Publicado: (2020) -
Lymph node metastasis prediction of papillary thyroid carcinoma based on transfer learning radiomics
por: Jinhua Yu, et al.
Publicado: (2020) -
Five-year follow-up of treatment outcomes in patients with early-stage breast cancer and clinically negative axillary nodes treated with no lymph node dissection or axillary clearance
por: Yamamoto D, et al.
Publicado: (2012) -
Prognostic value of extranodal extension in axillary lymph node-positive breast cancer
por: XiaoXi Ma, et al.
Publicado: (2021) -
Modern view on the issues of diagnosis and verification of axillary lymph nodes involvement in early breast cancer
por: Irina V. Kolyadina, et al.
Publicado: (2020)