The effect of pyriproxyfen as a "population growth regulator" against Aedes albopictus under semi-field conditions.

An insect growth regulator, pyriproxyfen, has been used for the control of a range of pest insects, including mosquitoes. Pyriproxyfen is effective in inhibiting adult emergence and sterilizing adult females. The Asian tiger mosquito, Aedes albopictus (Skuse), is an important vector of dengue and ch...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shin-ya Ohba, Kazunori Ohashi, Endang Pujiyati, Yukiko Higa, Hitoshi Kawada, Nobuaki Mito, Masahiro Takagi
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d577707fb7f64c0eaf5bf83b0e104b13
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:An insect growth regulator, pyriproxyfen, has been used for the control of a range of pest insects, including mosquitoes. Pyriproxyfen is effective in inhibiting adult emergence and sterilizing adult females. The Asian tiger mosquito, Aedes albopictus (Skuse), is an important vector of dengue and chikungunya, and is expanding its distribution throughout Europe and the Americas. In the present study, we evaluated the impact of pyriproxyfen-treated bed nets on population growth of Ae. albopictus under semi-field conditions, using 6 small microcosms. We created microcosms containing breeding sites to simulate the natural ecosystem of vector mosquito and installing miniature bed net treated with 350 mg/m(2) pyriproxyfen in Experiment I and 35 mg/m(2) in Experiment II. For each experiment, we also established microcosms installing untreated polyethylene net (untreated control). The installing nets were provided with artificially torn holes, to simulate damage and allow mosquitoes to penetrate. We released 100 pairs of Ae. albopictus into each microcosm, and allowed them to feed on a mouse under the bed nets at approximately 1-week intervals. In comparison with the untreated control microcosms, the number of eggs laid by the released adults in the pyriproxyfen-treated microcosms was significantly lower in both Experiment I and II. Moreover, egg hatchability was significantly suppressed and pupal mortality was increased. Our results indicate that tarsal contact with pyriproxyfen has been shown to suppress egg production and hatchability in adult females and the auto-dissemination of pyriproxyfen into larval breeding sites by adult mosquitoes, through contact with pyriproxyfen-treated polyethylene bed nets, may suppress the mosquito population density.