Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
Recently, data-driven methods represented by deep learning have been widely used in hyperspectral image (HSI) classification and achieved the promising success. However, using less labeled samples to obtain higher classification accuracy is still a challenging task. In this study, we propose a patch...
Guardado en:
Autores principales: | Bing Liu, Xuchu Yu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d57a13efa2ed4762aad33712b09d495d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Hybrid Capsule Network for Hyperspectral Image Classification
por: Massoud Khodadadzadeh, et al.
Publicado: (2021) -
LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
por: Su Qiao, et al.
Publicado: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
por: Xiaochen Lu, et al.
Publicado: (2021) -
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
por: Mohsen Ansari, et al.
Publicado: (2021) -
Global Context-Based Multilevel Feature Fusion Networks for Multilabel Remote Sensing Image Scene Classification
por: Xin Wang, et al.
Publicado: (2021)