Patch-Free Bilateral Network for Hyperspectral Image Classification Using Limited Samples
Recently, data-driven methods represented by deep learning have been widely used in hyperspectral image (HSI) classification and achieved the promising success. However, using less labeled samples to obtain higher classification accuracy is still a challenging task. In this study, we propose a patch...
Enregistré dans:
Auteurs principaux: | Bing Liu, Xuchu Yu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IEEE
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d57a13efa2ed4762aad33712b09d495d |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
A Hybrid Capsule Network for Hyperspectral Image Classification
par: Massoud Khodadadzadeh, et autres
Publié: (2021) -
LiteSCANet: An Efficient Lightweight Network Based on Spectral and Channel-Wise Attention for Hyperspectral Image Classification
par: Su Qiao, et autres
Publié: (2021) -
Hyperspectral Image Classification Based on Multilevel Joint Feature Extraction Network
par: Xiaochen Lu, et autres
Publié: (2021) -
A New Convolutional Kernel Classifier for Hyperspectral Image Classification
par: Mohsen Ansari, et autres
Publié: (2021) -
Global Context-Based Multilevel Feature Fusion Networks for Multilabel Remote Sensing Image Scene Classification
par: Xin Wang, et autres
Publié: (2021)