Capturing spike train temporal pattern with wavelet average coefficient for brain machine interface
Abstract Motor brain machine interfaces (BMIs) directly link the brain to artificial actuators and have the potential to mitigate severe body paralysis caused by neurological injury or disease. Most BMI systems involve a decoder that analyzes neural spike counts to infer movement intent. However, ma...
Guardado en:
Autores principales: | Shixian Wen, Allen Yin, Po-He Tseng, Laurent Itti, Mikhail A. Lebedev, Miguel Nicolelis |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d5836d99c3f14482b691c159979bcd53 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Temporal pairwise spike correlations fully capture single-neuron information
por: Amadeus Dettner, et al.
Publicado: (2016) -
Analysis of Transient Changes in Friction Coefficient with Wavelet Transform
por: Ayako Nakahara, et al.
Publicado: (2008) -
Multispectral co-occurrence of wavelet coefficients for malignancy assessment of brain tumors.
por: Shaswati Roy, et al.
Publicado: (2021) -
Comparison of the Average Kappa Coefficients of Two Binary Diagnostic Tests with Missing Data
por: José Antonio Roldán-Nofuentes, et al.
Publicado: (2021) -
APPLICATIONS OF WAVELETS IN INDUCTION MACHINE FAULT DETECTION
por: Schmitt,Erick, et al.
Publicado: (2010)