A carbon nanotube integrated microfluidic device for blood plasma extraction

Abstract Blood is a complex fluid consisting of cells and plasma. Plasma contains key biomarkers essential for disease diagnosis and therapeutic monitoring. Thus, by separating plasma from the blood, it is possible to analyze these biomarkers. Conventional methods for plasma extraction involve bulky...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yin-Ting Yeh, Zhong Lin, Si-Yang Zheng, Mauricio Terrones
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2018
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d590fd51b1a9461c9e7778556b49b12c
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Blood is a complex fluid consisting of cells and plasma. Plasma contains key biomarkers essential for disease diagnosis and therapeutic monitoring. Thus, by separating plasma from the blood, it is possible to analyze these biomarkers. Conventional methods for plasma extraction involve bulky equipment, and miniaturization constitutes a key step to develop portable devices for plasma extraction. Here, we integrated nanomaterial synthesis with microfabrication, and built a microfluidic device. In particular, we designed a double-spiral channel able to perform cross-flow filtration. This channel was constructed by growing aligned carbon nanotubes (CNTs) with average inter-tubular distances of ~80 nm, which resulted in porosity values of ~93%. During blood extraction, these aligned CNTs allow smaller molecules (e.g., proteins) to pass through the channel wall, while larger molecules (e.g., cells) get blocked. Our results show that our device effectively separates plasma from blood, by trapping blood cells. We successfully recovered albumin -the most abundant protein inside plasma- with an efficiency of ~80%. This work constitutes the first report on integrating biocompatible nitrogen-doped CNT (CNxCNT) arrays to extract plasma from human blood, thus widening the bio-applications of CNTs.