Fine-Grained Named Entity Recognition Using a Multi-Stacked Feature Fusion and Dual-Stacked Output in Korean
Named entity recognition (NER) is a natural language processing task to identify spans that mention named entities and to annotate them with predefined named entity classes. Although many NER models based on machine learning have been proposed, their performance in terms of processing fine-grained N...
Guardado en:
Autores principales: | Hongjin Kim, Harksoo Kim |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d5945ab22afa400fa1c085485e8264e0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
DRYING STRATEGIES CAPABLE OF REDUCING THE STRESS LEVEL OF A STACK OF BOARDS AS DEFINED BY A COMPREHENSIVE DUAL SCALE MODEL
por: Rémond,Romain, et al.
Publicado: (2008) -
TUNGSTEN AND RHENIUM AS HYDROGENATION AGENTS IN THE HYDRODENITROGENATION OF PYRIDINE USING STACKED BED CATALYST SYSTEMS
por: BASSI,R, et al.
Publicado: (2015) -
Bidirectional stack decoding of polar codes
por: Aleksandar Đ. Minja, et al.
Publicado: (2021) -
Domain Specific Entity Recognition With Semantic-Based Deep Learning Approach
por: Quoc Hung Ngo, et al.
Publicado: (2021) -
INVESTIGATION OF THE INFLUENCE OF INFORMATION SECURITY CELL STACK MATERIAL PARAMETERS ON ITS RELIABILITY
por: P.A. Maksimov, et al.
Publicado: (2021)