Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human

Abstract Neuroprosthetics that combine a brain computer interface (BCI) with functional electrical stimulation (FES) can restore voluntary control of a patients’ own paralyzed limbs. To date, human studies have demonstrated an “all-or-none” type of control for a fixed number of pre-determined states...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: David A. Friedenberg, Michael A. Schwemmer, Andrew J. Landgraf, Nicholas V. Annetta, Marcia A. Bockbrader, Chad E. Bouton, Mingming Zhang, Ali R. Rezai, W. Jerry Mysiw, Herbert S. Bresler, Gaurav Sharma
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d59a282e6e5741bd9dc9de34844ee611
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d59a282e6e5741bd9dc9de34844ee611
record_format dspace
spelling oai:doaj.org-article:d59a282e6e5741bd9dc9de34844ee6112021-12-02T11:50:57ZNeuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human10.1038/s41598-017-08120-92045-2322https://doaj.org/article/d59a282e6e5741bd9dc9de34844ee6112017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-08120-9https://doaj.org/toc/2045-2322Abstract Neuroprosthetics that combine a brain computer interface (BCI) with functional electrical stimulation (FES) can restore voluntary control of a patients’ own paralyzed limbs. To date, human studies have demonstrated an “all-or-none” type of control for a fixed number of pre-determined states, like hand-open and hand-closed. To be practical for everyday use, a BCI-FES system should enable smooth control of limb movements through a continuum of states and generate situationally appropriate, graded muscle contractions. Crucially, this functionality will allow users of BCI-FES neuroprosthetics to manipulate objects of different sizes and weights without dropping or crushing them. In this study, we present the first evidence that using a BCI-FES system, a human with tetraplegia can regain volitional, graded control of muscle contraction in his paralyzed limb. In addition, we show the critical ability of the system to generalize beyond training states and accurately generate wrist flexion states that are intermediate to training levels. These innovations provide the groundwork for enabling enhanced and more natural fine motor control of paralyzed limbs by BCI-FES neuroprosthetics.David A. FriedenbergMichael A. SchwemmerAndrew J. LandgrafNicholas V. AnnettaMarcia A. BockbraderChad E. BoutonMingming ZhangAli R. RezaiW. Jerry MysiwHerbert S. BreslerGaurav SharmaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-10 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
David A. Friedenberg
Michael A. Schwemmer
Andrew J. Landgraf
Nicholas V. Annetta
Marcia A. Bockbrader
Chad E. Bouton
Mingming Zhang
Ali R. Rezai
W. Jerry Mysiw
Herbert S. Bresler
Gaurav Sharma
Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
description Abstract Neuroprosthetics that combine a brain computer interface (BCI) with functional electrical stimulation (FES) can restore voluntary control of a patients’ own paralyzed limbs. To date, human studies have demonstrated an “all-or-none” type of control for a fixed number of pre-determined states, like hand-open and hand-closed. To be practical for everyday use, a BCI-FES system should enable smooth control of limb movements through a continuum of states and generate situationally appropriate, graded muscle contractions. Crucially, this functionality will allow users of BCI-FES neuroprosthetics to manipulate objects of different sizes and weights without dropping or crushing them. In this study, we present the first evidence that using a BCI-FES system, a human with tetraplegia can regain volitional, graded control of muscle contraction in his paralyzed limb. In addition, we show the critical ability of the system to generalize beyond training states and accurately generate wrist flexion states that are intermediate to training levels. These innovations provide the groundwork for enabling enhanced and more natural fine motor control of paralyzed limbs by BCI-FES neuroprosthetics.
format article
author David A. Friedenberg
Michael A. Schwemmer
Andrew J. Landgraf
Nicholas V. Annetta
Marcia A. Bockbrader
Chad E. Bouton
Mingming Zhang
Ali R. Rezai
W. Jerry Mysiw
Herbert S. Bresler
Gaurav Sharma
author_facet David A. Friedenberg
Michael A. Schwemmer
Andrew J. Landgraf
Nicholas V. Annetta
Marcia A. Bockbrader
Chad E. Bouton
Mingming Zhang
Ali R. Rezai
W. Jerry Mysiw
Herbert S. Bresler
Gaurav Sharma
author_sort David A. Friedenberg
title Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
title_short Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
title_full Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
title_fullStr Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
title_full_unstemmed Neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
title_sort neuroprosthetic-enabled control of graded arm muscle contraction in a paralyzed human
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/d59a282e6e5741bd9dc9de34844ee611
work_keys_str_mv AT davidafriedenberg neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT michaelaschwemmer neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT andrewjlandgraf neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT nicholasvannetta neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT marciaabockbrader neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT chadebouton neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT mingmingzhang neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT alirrezai neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT wjerrymysiw neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT herbertsbresler neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
AT gauravsharma neuroprostheticenabledcontrolofgradedarmmusclecontractioninaparalyzedhuman
_version_ 1718395193178193920