Model-based representational similarity analysis of blood-oxygen-level-dependent fMRI captures threat learning in social interactions

Past research has shown that attributions of intentions to other's actions determine how we experience these actions and their consequences. Yet, it is unknown how such attributions affect our learning and memory. Addressing this question, we combined neuroimaging with an interactive threat lea...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Irem Undeger, Renée M. Visser, Nina Becker, Lieke de Boer, Armita Golkar, Andreas Olsson
Format: article
Langue:EN
Publié: The Royal Society 2021
Sujets:
Q
Accès en ligne:https://doaj.org/article/d5d99fb0cd574a20886dcbc4c36e5ad7
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:Past research has shown that attributions of intentions to other's actions determine how we experience these actions and their consequences. Yet, it is unknown how such attributions affect our learning and memory. Addressing this question, we combined neuroimaging with an interactive threat learning paradigm in which two interaction partners (confederates) made choices that had either threatening (shock) or safe (no shock) consequences for the participants. Importantly, participants were led to believe that one partner intentionally caused the delivery of shock, whereas the other did not (i.e. unintentional partner). Following intentional versus unintentional shocks, participants reported an inflated number of shocks and a greater increase in anger and vengeance. We applied a model-based representational similarity analysis to blood-oxygen-level-dependent (BOLD)-MRI patterns during learning. Surprisingly, we did not find any effects of intentionality. The threat value of actions, however, was represented as a trial-by-trial increase in representational similarity in the insula and the inferior frontal gyrus. Our findings illustrate how neural pattern formation can be used to study a complex interaction.