On Some Features of the Numerical Solving of Coefficient Inverse Problems for an Equation of the Reaction-Diffusion-Advection-Type with Data on the Position of a Reaction Front
The work continues a series of articles devoted to the peculiarities of solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection-type with data on the position of the reaction front. In this paper, we place the emphasis on some problems of...
Guardado en:
Autores principales: | Raul Argun, Alexandr Gorbachev, Dmitry Lukyanenko, Maxim Shishlenin |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d5df7a9d82ea4ce185fc38cecedb04b5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Traveling waves for unbalanced bistable equations with density dependent diffusion
por: Pavel Drabek, et al.
Publicado: (2021) -
Generalized solutions of the Cauchy problem for the Navier-Stokes system and diffusion processes
por: Albeverio,S, et al.
Publicado: (2010) -
A numerical algorithm in reproducing kernel-based approach for solving the inverse source problem of the time–space fractional diffusion equation
por: Smina Djennadi, et al.
Publicado: (2021) -
Journal of inverse and ill-posed problems
Publicado: (1993) -
Some Finite Difference Methods to Model Biofilm Growth and Decay: Classical and Non-Standard
por: Yusuf Olatunji Tijani, et al.
Publicado: (2021)