Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.

Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degrader...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Manuel Martinez-Garcia, David M Brazel, Brandon K Swan, Carol Arnosti, Patrick S G Chain, Krista G Reitenga, Gary Xie, Nicole J Poulton, Monica Lluesma Gomez, Dashiell E D Masland, Brian Thompson, Wendy K Bellows, Kai Ziervogel, Chien-Chi Lo, Sanaa Ahmed, Cheryl D Gleasner, Chris J Detter, Ramunas Stepanauskas
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2012
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d5e26c59515147918cf24d87c323c124
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d5e26c59515147918cf24d87c323c124
record_format dspace
spelling oai:doaj.org-article:d5e26c59515147918cf24d87c323c1242021-11-18T07:21:26ZCapturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.1932-620310.1371/journal.pone.0035314https://doaj.org/article/d5e26c59515147918cf24d87c323c1242012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/22536372/pdf/?tool=EBIhttps://doaj.org/toc/1932-6203Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.Manuel Martinez-GarciaDavid M BrazelBrandon K SwanCarol ArnostiPatrick S G ChainKrista G ReitengaGary XieNicole J PoultonMonica Lluesma GomezDashiell E D MaslandBrian ThompsonWendy K BellowsKai ZiervogelChien-Chi LoSanaa AhmedCheryl D GleasnerChris J DetterRamunas StepanauskasPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 4, p e35314 (2012)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Manuel Martinez-Garcia
David M Brazel
Brandon K Swan
Carol Arnosti
Patrick S G Chain
Krista G Reitenga
Gary Xie
Nicole J Poulton
Monica Lluesma Gomez
Dashiell E D Masland
Brian Thompson
Wendy K Bellows
Kai Ziervogel
Chien-Chi Lo
Sanaa Ahmed
Cheryl D Gleasner
Chris J Detter
Ramunas Stepanauskas
Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.
description Microbial hydrolysis of polysaccharides is critical to ecosystem functioning and is of great interest in diverse biotechnological applications, such as biofuel production and bioremediation. Here we demonstrate the use of a new, efficient approach to recover genomes of active polysaccharide degraders from natural, complex microbial assemblages, using a combination of fluorescently labeled substrates, fluorescence-activated cell sorting, and single cell genomics. We employed this approach to analyze freshwater and coastal bacterioplankton for degraders of laminarin and xylan, two of the most abundant storage and structural polysaccharides in nature. Our results suggest that a few phylotypes of Verrucomicrobia make a considerable contribution to polysaccharide degradation, although they constituted only a minor fraction of the total microbial community. Genomic sequencing of five cells, representing the most predominant, polysaccharide-active Verrucomicrobia phylotype, revealed significant enrichment in genes encoding a wide spectrum of glycoside hydrolases, sulfatases, peptidases, carbohydrate lyases and esterases, confirming that these organisms were well equipped for the hydrolysis of diverse polysaccharides. Remarkably, this enrichment was on average higher than in the sequenced representatives of Bacteroidetes, which are frequently regarded as highly efficient biopolymer degraders. These findings shed light on the ecological roles of uncultured Verrucomicrobia and suggest specific taxa as promising bioprospecting targets. The employed method offers a powerful tool to rapidly identify and recover discrete genomes of active players in polysaccharide degradation, without the need for cultivation.
format article
author Manuel Martinez-Garcia
David M Brazel
Brandon K Swan
Carol Arnosti
Patrick S G Chain
Krista G Reitenga
Gary Xie
Nicole J Poulton
Monica Lluesma Gomez
Dashiell E D Masland
Brian Thompson
Wendy K Bellows
Kai Ziervogel
Chien-Chi Lo
Sanaa Ahmed
Cheryl D Gleasner
Chris J Detter
Ramunas Stepanauskas
author_facet Manuel Martinez-Garcia
David M Brazel
Brandon K Swan
Carol Arnosti
Patrick S G Chain
Krista G Reitenga
Gary Xie
Nicole J Poulton
Monica Lluesma Gomez
Dashiell E D Masland
Brian Thompson
Wendy K Bellows
Kai Ziervogel
Chien-Chi Lo
Sanaa Ahmed
Cheryl D Gleasner
Chris J Detter
Ramunas Stepanauskas
author_sort Manuel Martinez-Garcia
title Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.
title_short Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.
title_full Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.
title_fullStr Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.
title_full_unstemmed Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia.
title_sort capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of verrucomicrobia.
publisher Public Library of Science (PLoS)
publishDate 2012
url https://doaj.org/article/d5e26c59515147918cf24d87c323c124
work_keys_str_mv AT manuelmartinezgarcia capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT davidmbrazel capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT brandonkswan capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT carolarnosti capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT patricksgchain capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT kristagreitenga capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT garyxie capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT nicolejpoulton capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT monicalluesmagomez capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT dashielledmasland capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT brianthompson capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT wendykbellows capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT kaiziervogel capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT chienchilo capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT sanaaahmed capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT cheryldgleasner capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT chrisjdetter capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
AT ramunasstepanauskas capturingsinglecellgenomesofactivepolysaccharidedegradersanunexpectedcontributionofverrucomicrobia
_version_ 1718423629551632384