Towards inferring nanopore sequencing ionic currents from nucleotide chemical structures
Nanopore sequencing allows users to identify nucleotide sequence from ionic currents. Here, the authors use deep learning to facilitate the de novo identification of modified nucleotides, particularly methylated cytosine and guanine, from the measured ionic currents without the need for controls.
Guardado en:
Autores principales: | Hongxu Ding, Ioannis Anastopoulos, Andrew D. Bailey, Joshua Stuart, Benedict Paten |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d5ed7a8399bc4a528ffb86cdb93210db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
VEGA is an interpretable generative model for inferring biological network activity in single-cell transcriptomics
por: Lucas Seninge, et al.
Publicado: (2021) -
Origin and control of ionic hydration patterns in nanopores
por: Miraslau L. Barabash, et al.
Publicado: (2021) -
Detection of single nucleotide and copy number variants in the Fabry disease-associated GLA gene using nanopore sequencing
por: Albina Nowak, et al.
Publicado: (2021) -
Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores
por: Gang Huang, et al.
Publicado: (2017) -
Sequencing DNA with nanopores: Troubles and biases.
por: Clara Delahaye, et al.
Publicado: (2021)