A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>

ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) systems generate a hig...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mei-Yi Yan, Si-Shang Li, Xin-Yuan Ding, Xiao-Peng Guo, Qi Jin, Yi-Cheng Sun
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2020
Materias:
Acceso en línea:https://doaj.org/article/d5efd17612704f668563a19bea374a8f
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d5efd17612704f668563a19bea374a8f
record_format dspace
spelling oai:doaj.org-article:d5efd17612704f668563a19bea374a8f2021-11-15T15:56:58ZA CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>10.1128/mBio.02364-192150-7511https://doaj.org/article/d5efd17612704f668563a19bea374a8f2020-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02364-19https://doaj.org/toc/2150-7511ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis. Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis. Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli. IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis. More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling.Mei-Yi YanSi-Shang LiXin-Yuan DingXiao-Peng GuoQi JinYi-Cheng SunAmerican Society for MicrobiologyarticleCRISPR-Cas systemMycobacterium marinumMycobacterium smegmatisMycobacterium tuberculosisgenome editingnonhomologous end joiningMicrobiologyQR1-502ENmBio, Vol 11, Iss 1 (2020)
institution DOAJ
collection DOAJ
language EN
topic CRISPR-Cas system
Mycobacterium marinum
Mycobacterium smegmatis
Mycobacterium tuberculosis
genome editing
nonhomologous end joining
Microbiology
QR1-502
spellingShingle CRISPR-Cas system
Mycobacterium marinum
Mycobacterium smegmatis
Mycobacterium tuberculosis
genome editing
nonhomologous end joining
Microbiology
QR1-502
Mei-Yi Yan
Si-Shang Li
Xin-Yuan Ding
Xiao-Peng Guo
Qi Jin
Yi-Cheng Sun
A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
description ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis. Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis. Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli. IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis. More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling.
format article
author Mei-Yi Yan
Si-Shang Li
Xin-Yuan Ding
Xiao-Peng Guo
Qi Jin
Yi-Cheng Sun
author_facet Mei-Yi Yan
Si-Shang Li
Xin-Yuan Ding
Xiao-Peng Guo
Qi Jin
Yi-Cheng Sun
author_sort Mei-Yi Yan
title A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_short A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_full A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_fullStr A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_full_unstemmed A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
title_sort crispr-assisted nonhomologous end-joining strategy for efficient genome editing in <named-content content-type="genus-species">mycobacterium tuberculosis</named-content>
publisher American Society for Microbiology
publishDate 2020
url https://doaj.org/article/d5efd17612704f668563a19bea374a8f
work_keys_str_mv AT meiyiyan acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT sishangli acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT xinyuanding acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT xiaopengguo acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT qijin acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT yichengsun acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT meiyiyan crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT sishangli crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT xinyuanding crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT xiaopengguo crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT qijin crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
AT yichengsun crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent
_version_ 1718427057066606592