A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>
ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) systems generate a hig...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d5efd17612704f668563a19bea374a8f |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:d5efd17612704f668563a19bea374a8f |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:d5efd17612704f668563a19bea374a8f2021-11-15T15:56:58ZA CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content>10.1128/mBio.02364-192150-7511https://doaj.org/article/d5efd17612704f668563a19bea374a8f2020-02-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mBio.02364-19https://doaj.org/toc/2150-7511ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis. Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis. Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli. IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis. More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling.Mei-Yi YanSi-Shang LiXin-Yuan DingXiao-Peng GuoQi JinYi-Cheng SunAmerican Society for MicrobiologyarticleCRISPR-Cas systemMycobacterium marinumMycobacterium smegmatisMycobacterium tuberculosisgenome editingnonhomologous end joiningMicrobiologyQR1-502ENmBio, Vol 11, Iss 1 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
CRISPR-Cas system Mycobacterium marinum Mycobacterium smegmatis Mycobacterium tuberculosis genome editing nonhomologous end joining Microbiology QR1-502 |
spellingShingle |
CRISPR-Cas system Mycobacterium marinum Mycobacterium smegmatis Mycobacterium tuberculosis genome editing nonhomologous end joining Microbiology QR1-502 Mei-Yi Yan Si-Shang Li Xin-Yuan Ding Xiao-Peng Guo Qi Jin Yi-Cheng Sun A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> |
description |
ABSTRACT New tools for genetic manipulation of Mycobacterium tuberculosis are needed for the development of new drug regimens and vaccines aimed at curing tuberculosis infections. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) systems generate a highly specific double-strand break at the target site that can be repaired via nonhomologous end joining (NHEJ), resulting in the desired genome alteration. In this study, we first improved the NHEJ repair pathway and developed a CRISPR-Cas-mediated genome-editing method that allowed us to generate markerless deletion in Mycobacterium smegmatis, Mycobacterium marinum, and M. tuberculosis. Then, we demonstrated that this system could efficiently achieve simultaneous generation of double mutations and large-scale genetic mutations in M. tuberculosis. Finally, we showed that the strategy we developed can also be used to facilitate genome editing in Escherichia coli. IMPORTANCE The global health impact of M. tuberculosis necessitates the development of new genetic tools for its manipulation, to facilitate the identification and characterization of novel drug targets and vaccine candidates. Clustered regularly interspaced short palindromic repeat (CRISPR)–CRISPR-associated protein (Cas) genome editing has proven to be a powerful genetic tool in various organisms; to date, however, attempts to use this approach in M. tuberculosis have failed. Here, we describe a genome-editing tool based on CRISPR cleavage and the nonhomologous end-joining (NHEJ) repair pathway that can efficiently generate deletion mutants in M. tuberculosis. More importantly, this system can generate simultaneous double mutations and large-scale genetic mutations in this species. We anticipate that this CRISPR-NHEJ-assisted genome-editing system will be broadly useful for research on mycobacteria, vaccine development, and drug target profiling. |
format |
article |
author |
Mei-Yi Yan Si-Shang Li Xin-Yuan Ding Xiao-Peng Guo Qi Jin Yi-Cheng Sun |
author_facet |
Mei-Yi Yan Si-Shang Li Xin-Yuan Ding Xiao-Peng Guo Qi Jin Yi-Cheng Sun |
author_sort |
Mei-Yi Yan |
title |
A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> |
title_short |
A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> |
title_full |
A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> |
title_fullStr |
A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> |
title_full_unstemmed |
A CRISPR-Assisted Nonhomologous End-Joining Strategy for Efficient Genome Editing in <named-content content-type="genus-species">Mycobacterium tuberculosis</named-content> |
title_sort |
crispr-assisted nonhomologous end-joining strategy for efficient genome editing in <named-content content-type="genus-species">mycobacterium tuberculosis</named-content> |
publisher |
American Society for Microbiology |
publishDate |
2020 |
url |
https://doaj.org/article/d5efd17612704f668563a19bea374a8f |
work_keys_str_mv |
AT meiyiyan acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT sishangli acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT xinyuanding acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT xiaopengguo acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT qijin acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT yichengsun acrisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT meiyiyan crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT sishangli crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT xinyuanding crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT xiaopengguo crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT qijin crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent AT yichengsun crisprassistednonhomologousendjoiningstrategyforefficientgenomeeditinginnamedcontentcontenttypegenusspeciesmycobacteriumtuberculosisnamedcontent |
_version_ |
1718427057066606592 |