Biological data annotation via a human-augmenting AI-based labeling system
Abstract Biology has become a prime area for the deployment of deep learning and artificial intelligence (AI), enabled largely by the massive data sets that the field can generate. Key to most AI tasks is the availability of a sufficiently large, labeled data set with which to train AI models. In th...
Guardado en:
Autores principales: | Douwe van der Wal, Iny Jhun, Israa Laklouk, Jeff Nirschl, Lara Richer, Rebecca Rojansky, Talent Theparee, Joshua Wheeler, Jörg Sander, Felix Feng, Osama Mohamad, Silvio Savarese, Richard Socher, Andre Esteva |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/d6164252a0d94935879eacf682d4bdaf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Towards Explainable Augmented Intelligence (AI) for Crack Characterization
por: Larissa Fradkin, et al.
Publicado: (2021) -
Efficient cellular annotation of histopathology slides with real-time AI augmentation
por: James A. Diao, et al.
Publicado: (2021) -
AI in Medical Imaging: Current and Future Status—Artificial Intelligence or Augmented Imaging?
por: Anirudh Kohli
Publicado: (2021) -
A prospective evaluation of AI-augmented epidemiology to forecast COVID-19 in the USA and Japan
por: Sercan Ö. Arık, et al.
Publicado: (2021) -
AI
Publicado: (2020)