Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences

Introduction/purpose: This paper considers, generalizes and improves recent results on fixed points in rectangular metric spaces. The aim of this paper is to provide much simpler and shorter proofs of some new results in rectangular metric spaces. Methods: Some standard methods from the fixed poin...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mudasir Younis, Nicola Fabiano, Zaid M. Fadail, Zoran D. Mitrović, Stojan N. Radenović
Formato: article
Lenguaje:EN
Publicado: University of Defence in Belgrade 2021
Materias:
U
Acceso en línea:https://doaj.org/article/d61e90ae3ddf4992a8d8857ad7fb27cc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d61e90ae3ddf4992a8d8857ad7fb27cc
record_format dspace
spelling oai:doaj.org-article:d61e90ae3ddf4992a8d8857ad7fb27cc2021-12-02T14:07:29ZSome new observations on fixed point results in rectangular metric spaces with applications to chemical sciences10.5937/vojtehg69-295170042-84692217-4753https://doaj.org/article/d61e90ae3ddf4992a8d8857ad7fb27cc2021-01-01T00:00:00Zhttps://scindeks-clanci.ceon.rs/data/pdf/0042-8469/2021/0042-84692101008Y.pdfhttps://doaj.org/toc/0042-8469https://doaj.org/toc/2217-4753Introduction/purpose: This paper considers, generalizes and improves recent results on fixed points in rectangular metric spaces. The aim of this paper is to provide much simpler and shorter proofs of some new results in rectangular metric spaces. Methods: Some standard methods from the fixed point theory in generalized metric spaces are used. Results: The obtained results improve the well-known results in the literature. The new approach has proved that the Picard sequence is Cauchy in rectangular metric spaces. The obtained results are used to prove the existence of solutions to some nonlinear problems related to chemical sciences. Finally, an open question is given for generalized contractile mappings in rectangular metric spaces. Conclusions: New results are given for fixed points in rectangular metric spaces with application to some problems in chemical sciences.Mudasir YounisNicola FabianoZaid M. FadailZoran D. MitrovićStojan N. RadenovićUniversity of Defence in Belgradearticlefixed pointrectangular metric spacecontractive mapgreen functionMilitary ScienceUEngineering (General). Civil engineering (General)TA1-2040ENVojnotehnički Glasnik, Vol 69, Iss 1, Pp 8-30 (2021)
institution DOAJ
collection DOAJ
language EN
topic fixed point
rectangular metric space
contractive map
green function
Military Science
U
Engineering (General). Civil engineering (General)
TA1-2040
spellingShingle fixed point
rectangular metric space
contractive map
green function
Military Science
U
Engineering (General). Civil engineering (General)
TA1-2040
Mudasir Younis
Nicola Fabiano
Zaid M. Fadail
Zoran D. Mitrović
Stojan N. Radenović
Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
description Introduction/purpose: This paper considers, generalizes and improves recent results on fixed points in rectangular metric spaces. The aim of this paper is to provide much simpler and shorter proofs of some new results in rectangular metric spaces. Methods: Some standard methods from the fixed point theory in generalized metric spaces are used. Results: The obtained results improve the well-known results in the literature. The new approach has proved that the Picard sequence is Cauchy in rectangular metric spaces. The obtained results are used to prove the existence of solutions to some nonlinear problems related to chemical sciences. Finally, an open question is given for generalized contractile mappings in rectangular metric spaces. Conclusions: New results are given for fixed points in rectangular metric spaces with application to some problems in chemical sciences.
format article
author Mudasir Younis
Nicola Fabiano
Zaid M. Fadail
Zoran D. Mitrović
Stojan N. Radenović
author_facet Mudasir Younis
Nicola Fabiano
Zaid M. Fadail
Zoran D. Mitrović
Stojan N. Radenović
author_sort Mudasir Younis
title Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
title_short Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
title_full Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
title_fullStr Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
title_full_unstemmed Some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
title_sort some new observations on fixed point results in rectangular metric spaces with applications to chemical sciences
publisher University of Defence in Belgrade
publishDate 2021
url https://doaj.org/article/d61e90ae3ddf4992a8d8857ad7fb27cc
work_keys_str_mv AT mudasiryounis somenewobservationsonfixedpointresultsinrectangularmetricspaceswithapplicationstochemicalsciences
AT nicolafabiano somenewobservationsonfixedpointresultsinrectangularmetricspaceswithapplicationstochemicalsciences
AT zaidmfadail somenewobservationsonfixedpointresultsinrectangularmetricspaceswithapplicationstochemicalsciences
AT zorandmitrovic somenewobservationsonfixedpointresultsinrectangularmetricspaceswithapplicationstochemicalsciences
AT stojannradenovic somenewobservationsonfixedpointresultsinrectangularmetricspaceswithapplicationstochemicalsciences
_version_ 1718391992635883520