Multi-qubit correction for quantum annealers

Abstract We present multi-qubit correction (MQC) as a novel postprocessing method for quantum annealers that views the evolution in an open-system as a Gibbs sampler and reduces a set of excited states to a new synthetic state with lower energy value. After sampling from the ground state of a given...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ramin Ayanzadeh, John Dorband, Milton Halem, Tim Finin
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d626f5a38df249f0ac56098191c19eaa
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:d626f5a38df249f0ac56098191c19eaa
record_format dspace
spelling oai:doaj.org-article:d626f5a38df249f0ac56098191c19eaa2021-12-02T19:06:40ZMulti-qubit correction for quantum annealers10.1038/s41598-021-95482-w2045-2322https://doaj.org/article/d626f5a38df249f0ac56098191c19eaa2021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95482-whttps://doaj.org/toc/2045-2322Abstract We present multi-qubit correction (MQC) as a novel postprocessing method for quantum annealers that views the evolution in an open-system as a Gibbs sampler and reduces a set of excited states to a new synthetic state with lower energy value. After sampling from the ground state of a given (Ising) Hamiltonian, MQC compares pairs of excited states to recognize virtual tunnels—i.e., a group of qubits that changing their states simultaneously can result in a new state with lower energy value—and successively converges to the ground state. Experimental results using D-Wave 2000Q quantum annealers demonstrate that MQC finds samples with notably lower energy values and improves the reproducibility of results when compared to recent hardware/software advances in the realm of quantum annealing, such as spin-reversal transforms, classical postprocessing techniques, and increased inter-sample delay between successive measurements.Ramin AyanzadehJohn DorbandMilton HalemTim FininNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Ramin Ayanzadeh
John Dorband
Milton Halem
Tim Finin
Multi-qubit correction for quantum annealers
description Abstract We present multi-qubit correction (MQC) as a novel postprocessing method for quantum annealers that views the evolution in an open-system as a Gibbs sampler and reduces a set of excited states to a new synthetic state with lower energy value. After sampling from the ground state of a given (Ising) Hamiltonian, MQC compares pairs of excited states to recognize virtual tunnels—i.e., a group of qubits that changing their states simultaneously can result in a new state with lower energy value—and successively converges to the ground state. Experimental results using D-Wave 2000Q quantum annealers demonstrate that MQC finds samples with notably lower energy values and improves the reproducibility of results when compared to recent hardware/software advances in the realm of quantum annealing, such as spin-reversal transforms, classical postprocessing techniques, and increased inter-sample delay between successive measurements.
format article
author Ramin Ayanzadeh
John Dorband
Milton Halem
Tim Finin
author_facet Ramin Ayanzadeh
John Dorband
Milton Halem
Tim Finin
author_sort Ramin Ayanzadeh
title Multi-qubit correction for quantum annealers
title_short Multi-qubit correction for quantum annealers
title_full Multi-qubit correction for quantum annealers
title_fullStr Multi-qubit correction for quantum annealers
title_full_unstemmed Multi-qubit correction for quantum annealers
title_sort multi-qubit correction for quantum annealers
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/d626f5a38df249f0ac56098191c19eaa
work_keys_str_mv AT raminayanzadeh multiqubitcorrectionforquantumannealers
AT johndorband multiqubitcorrectionforquantumannealers
AT miltonhalem multiqubitcorrectionforquantumannealers
AT timfinin multiqubitcorrectionforquantumannealers
_version_ 1718377178770440192