Learning spin liquids on a honeycomb lattice with artificial neural networks
Abstract Machine learning methods provide a new perspective on the study of many-body system in condensed matter physics and there is only limited understanding of their representational properties and limitations in quantum spin liquid systems. In this work, we investigate the ability of the machin...
Enregistré dans:
Auteurs principaux: | Chang-Xiao Li, Sheng Yang, Jing-Bo Xu |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/d62a9389027543848943424de4bd2cde |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Author Correction: Learning spin liquids on a honeycomb lattice with artificial neural networks
par: Chang‑Xiao Li, et autres
Publié: (2021) -
Precursor of pair-density wave in doping Kitaev spin liquid on the honeycomb lattice
par: Cheng Peng, et autres
Publié: (2021) -
Quantum loop states in spin-orbital models on the honeycomb lattice
par: Lucile Savary
Publié: (2021) -
Emergent superconductivity in an iron-based honeycomb lattice initiated by pressure-driven spin-crossover
par: Yonggang Wang, et autres
Publié: (2018) -
Spin-lattice decoupling in a triangular-lattice quantum spin liquid
par: Takayuki Isono, et autres
Publié: (2018)