Scarcity of scale-free topology is universal across biochemical networks

Abstract Biochemical reactions underlie the functioning of all life. Like many examples of biology or technology, the complex set of interactions among molecules within cells and ecosystems poses a challenge for quantification within simple mathematical objects. A large body of research has indicate...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Harrison B. Smith, Hyunju Kim, Sara I. Walker
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/d6323a16b13d408ab61b4a94b40e4976
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Biochemical reactions underlie the functioning of all life. Like many examples of biology or technology, the complex set of interactions among molecules within cells and ecosystems poses a challenge for quantification within simple mathematical objects. A large body of research has indicated many real-world biological and technological systems, including biochemistry, can be described by power-law relationships between the numbers of nodes and edges, often described as “scale-free”. Recently, new statistical analyses have revealed true scale-free networks are rare. We provide a first application of these methods to data sampled from across two distinct levels of biological organization: individuals and ecosystems. We analyze a large ensemble of biochemical networks including networks generated from data of 785 metagenomes and 1082 genomes (sampled from the three domains of life). The results confirm no more than a few biochemical networks are any more than super-weakly scale-free. Additionally, we test the distinguishability of individual and ecosystem-level biochemical networks and show there is no sharp transition in the structure of biochemical networks across these levels of organization moving from individuals to ecosystems. This result holds across different network projections. Our results indicate that while biochemical networks are not scale-free, they nonetheless exhibit common structure across different levels of organization, independent of the projection chosen, suggestive of shared organizing principles across all biochemical networks.